2022初三数学课件:《函数对称性的探究》.docx
《2022初三数学课件:《函数对称性的探究》.docx》由会员分享,可在线阅读,更多相关《2022初三数学课件:《函数对称性的探究》.docx(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022初三数学课件:函数对称性的探究 函数是中学数学教学的主线,是中学数学的核心内容,也是整个中学数学的基础,对称关系还充分体现了数学之美。下面课件网小编为您举荐初三数学课件:函数对称性的探究。 一、 函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,点P( x ,y)关于点A (a ,b)的对称点P(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故
2、f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P(2a-x0,2b-y0)也在y = f (x) 图像上,而点P与点P关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0 定理2.函数 y = f (x)的图像关于直线x = a对称的充要条件是 f (a +x)
3、 = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. 若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a&
4、ne;b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 的证明留给读者,以下给出的证明: 函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得: f (2b-x) + f 2a-(2b-x) =2c(*) 又函数y = f (x)图像直线x =b成轴对称, ∴ f (2b-x) = f (x)代入(*)得: f (x) = 2c-f 2(a-b) + x(*),用2(a-b)-x代x得 f 2 (a-b)+ x = 2c-f 4(a-b) + x代入(*)得: f (x)
5、= f 4(a-b) + x,故y = f (x)是周期函数,且4| a-b|是其一个周期。 二、 不同函数对称性的探究 定理4.函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。 定理5.函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。 函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。 函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。 定理4与定理5中的证明留给读者,现证定理5中的 设点P(x0 ,y0)是y = f (x)图像上
6、任一点,则y0 = f (x0)。记点P( x ,y)关于直线x-y = a的轴对称点为P(x1, y1),则x1 = a + y0 , y1 = x0-a ,∴x0 = a + y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1) ∴点P(x1, y1)在函数x-a = f (y + a)的图像上。 同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。故定理5中的成立。 推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数对称性的探究 2022 初三 数学 课件 函数 对称性 探究
限制150内