人工智能与数据挖掘技术研究.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《人工智能与数据挖掘技术研究.docx》由会员分享,可在线阅读,更多相关《人工智能与数据挖掘技术研究.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、人工智能与数据挖掘技术研究 摘要:人工智能技术是智能决策支持系统的重要组成部分,数据挖掘在智能决策支持系统的影响空间中,主要负责智能决策支持的处理。因此,数据挖掘在整个智能决策支持系统中有着举足轻重的位置。数据挖掘使用的技术和方法广泛来自人工智能,本文分别介绍了人工智能技术和数据挖掘技术的定义,研究背景和研究目的,以及数据挖掘与人工智能的联系,并结合国内外在该领域的研究成果指出了其广阔的发展前景。 关键词:人工智能;数据挖掘;发展前景 当今社会已经进入了人工智能时代,人工智能的应用,大大改善了我们的生活。大数据时代已经来临,不论是从数据的使用,挖掘,处理等方面,都为人工智能的应用起到了基础和保
2、障。 1人工智能 1.1人工智能的定义。人工智能(ArtificialIntelligence),简称AI。属于计算机学科下的分支,顾名思义,它是一门专门研究类人化的智能机器学科,即利用现阶段科学的研究方法和技术,研制出具有模仿、延伸和扩展人类智能的机器或智能系统,从而实现利用机器模仿人类智能的一切行为。1.2人工智能的研究背景。在1956年的达特矛斯会议上,“人工智能”这一术语正式由麦卡锡提议并采用了,随后人工智能的研究取得了许多引人注目的成就。在这之后,科研人员进行了许多的研究和开发,人工智能这个话题也取得了飞速的发展。人工智能是一门极具挑战性的科学,从事这项工作的人必须了解计算机知识、心
3、理学和哲学理念。人工智能的研究包涵广泛的科学知识,以及其他领域的知识,如机器学习、计算机视觉等。一般来说,人工智能研究的主要目标是使机器能够做一些通常需要人工智能完成复杂工作的机器。1.3人工智能的研发历程。早期研究领域:人工智能专家系统,机器学习,模式识别,自然语言理解,自动定理证明,自动编程,机器人,游戏,人工神经网络等,现在涉及以下研究领域:数据挖掘,智能决策系统,知识工程,分布式人工智能等。数据挖掘的出现使得人工智能的研究在应用领域得到广泛的发展。以下简要介绍其中的几个重要部分:(1)专家系统。所谓专家系统就是控制计算的智能化程序系统,通过研发人员总结归纳了专业学科知识和日常经验,能够
4、知道计算机完成某个领域内的专业性活动或者解决某些专业级别的问题。人工智能技术可以合理利用已知的经验体系在复杂环境中,解决和处理复杂问题。(2)机器系统。机器系统简单说就是机器人通过人造神经系统,借助于网络或者存储系统汲取系统的知识进行开发研究。(3)感知仿生。感知仿生系统通过模拟人类的感官,感知生物学特征,通过人工智能机器的感部件对外界外部环境进行感知,识别,判断,分析的能力。能够更好的适应环境,做出判断。(4)数据重组和发掘。是指通过人工智能系统,结合当前先进的理念,对大数据的总结归纳,识别存储,调取等应用。通过数据的加工处理,能够主动做出判断和分析。(5)人工智能模式。分布式人工智能是模式
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 数据 挖掘 技术研究
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内