大数据下数据挖掘技术的算法.docx
《大数据下数据挖掘技术的算法.docx》由会员分享,可在线阅读,更多相关《大数据下数据挖掘技术的算法.docx(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、大数据下数据挖掘技术的算法 在大数据背景下,许多传统科学技术的发展达到了新的高度,同时也衍生出一些新兴技术,这些推动着互联网行业的前行。新技术的发展也伴随着新问题的产生,现有的数据处理技术难以满足大数据发展的需要,在数据保护等方面依旧存在着一定的风险。因此,进一步完善大数据技术是当下需要攻克的难题。本文主要进行了大数据的简单引入,介绍数据挖掘技术及其应用,分析了当下的发展进度和面临的困难。 1大数据的相关引入 1.1大数据的概念。大数据主要指传统数据处理软件无法处理的数据集,大数据有海量、多样、高速和易变四大特点,通过大数据的使用,可以催生出新的信息处理形式,实现信息挖掘的有效性。大数据技术存
2、在的意义不仅在于收集海量的信息,更在于专业化的处理和分析,将信息转化为数据,从数据中提取有价值的知识。大数据分析与云计算关系密切,数据分析必须依托于云计算的分布式处理、分布式数据库等。1.2大数据的特点。伴随着越来越多的学者投入到对大数据的研究当中,其特点也逐渐明晰,都广泛的提及了这四个特点。(1)海量的数据规模,信息的数据体量明显区别于以往的GB、TB等计量单位,在大数据领域主要指可以突破IZP的数量级。(2)快速的数据流转,大数据作用的领域时刻处在数据更新的环境下,高效快速的分析数据是保证信息处理有效的前提。(3)多样的数据类型,广泛的数据来源催生出更加多样的数据结构。(4)价值低密度,也
3、是大数据的核心特征,相较于传统数据,大数据更加多变、模糊,给数据分析带来困扰,从而难以从中高密度的取得有价值的信息。1.3大数据的结构。大数据主要分为结构化、半结构化和非结构化三种数据结构。结构化一般指类似于数据库的数据管理模式。半结构化具有一定的结构性,但相比结构化来说更加灵活多变。目前非结构化数据占据所有数据的70%-80%,原因在于互联网上的信息内容多种多样,暂时无法找到有序的存储归类方法。1.4大数据技术大数据技术是指如何从各种类型的数据中,获得有利用价值的信息,其中大数据技术包括数据收集、数据存取、数据架构、数据处理、统计分析、数据挖掘、数据预测和结果呈现。在大数据的生命周期中,数据
4、收集处于第一阶段,主要来源有管理信息系统、Web信息系统等。根据数据结构类型不同,大数据的存取采用三种不同的形式,这样有利于其他技术的应用。数据架构源于谷歌提出的一种基于软件的可靠文件存储体系GFS(Google文件系统),相应推出的还有MapReduce计算模型,二者共同解决了当时的文件存储和运算问题。而后随着需求的不断增多,有学者基于谷歌的研究,开发出可以满足更多需求的Hadoop。 2数据挖掘技术 2.1数据挖掘技术以及云计算。如今全球每年都有数十亿人使用着计算机等电子设备,并产生了庞大的数据,各行各业都已经被数据所渗透,在大数据时代,数据挖掘已成为不可或缺的技术。数据挖掘通过统计、在线
5、分析、情报检索、机器学习、专家系统和模式识别等诸多方法来实现从海量数据中搜索隐藏于其中的信息这一过程。云计算是分布计算的其中一种,通常是指:通过网络搜集共享计算资源,并以最低的管理代价和最精准的计算方式获取结果的新型IT运算模式。也就是说云计算技术将庞大的数据计算处理程序拆分为一个个小程序,再通过多个服务器分别计算、处理和分析,最后将结果汇总并返回给用户。这项技术可以在短时间内迅速完成海量的数据处理,从而为日益更新的互联网服务。2.2数据挖掘的发展现状。从最早的数据库技术,到如今逐渐发展成熟的大数据技术,其目的都是实现数据的高效管理和有效利用。数据在我们身边无处不在,数据的收集已经不再是困扰我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数据 挖掘 技术 算法
限制150内