大学物理教案(上)(共141页).doc
《大学物理教案(上)(共141页).doc》由会员分享,可在线阅读,更多相关《大学物理教案(上)(共141页).doc(142页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第一章 质点运动学1-1 质点运动的描述一、参照系 坐标系 质点1、参照系为描述物体运动而选择的参考物体叫参照系。2、坐标系为了定量地研究物体的运动,要选择一个与参照系相对静止的坐标系。如图1-1。说明:参照系、坐标系是任意选择的,视处理问题方便而定。3、质点忽略物体的大小和形状,而把它看作一个具有质量、占据空间位置的物体,这样的物体称为质点。说明: 质点是一种理想模型,而不真实存在(物理中有很多理想模型) 质点突出了物体两个基本性质 1)具有质量 2)占有位置 物体能否视为质点是有条件的、相对的。二、位置矢量 运动方程 轨迹方程 位移1、位置矢量定义:由坐标原点到质
2、点所在位置的矢量称为位置矢量(简称位矢或径矢)。如图12,取的是直角坐标系,为质点的位置矢量 (1-1)位矢大小: (1-2)方向可由方向余弦确定:,2、运动方程质点的位置坐标与时间的函数关系,称为运动方程。运动方程 矢量式: (1-3) 标量式:, (1-4)3、轨迹方程从式(1-4)中消掉,得出、之间的关系式。如平面上运动质点,运动方程为,得轨迹方程为(抛物线)4、位移以平面运动为例,取直角坐标系,如图13。设、时刻质点位矢分别为、,则时间间隔内位矢变化为 (1-5)称为该时间间隔内质点的位移。 (1-6)大小为讨论: 比较与:二者均为矢量;前者是过程量,后者为瞬时量 比较与(AB路程)二
3、者均为过程量;前者是矢量,后者是标量。一般情况下。当时,。 什么运动情况下,均有?三、速度为了描述质点运动快慢及方向,从而引进速度概念。1、平均速度如图1-3, 定义: (1-7)称为时间间隔内质点的平均速度。 (1-8)方向:同方向。说明:与时间间隔相对应。2、瞬时速度粗略地描述了质点的运动情况。为了描述质点运动的细节,引进瞬时速度。定义:称为质点在时刻的瞬时速度,简称速度。 (1-9)结论:质点的速度等于位矢对时间的一阶导数。 (1-10)式中 , 。 、分别为在、轴方向的速度分量。的大小:的方向:所在位置的切线向前方向。与x正向轴夹角满足。3、平均速率与瞬时速率定义:(参见图1-3)称为
4、质点在时间段内得平均速率。为了描述运动细节,引进瞬时速率。定义:称为时刻质点的瞬时速率,简称速率。当时(参见图1-3),有 可知: 即 (1-11)结论:质点速率等于其速度大小或等于路程对时间的一阶导数。说明: 比较与:二者均为过程量;前者为标量,后者为矢量。 比较与:二者均为瞬时量;前者为标量,后者为矢量。四、加速度为了描述质点速度变化的快慢,从而引进加速度的概念。1、平均加速度定义:(见图1-4)称为时间间隔内质点的平均加速度。2、瞬时加速度为了描述质点运动速度变化的细节,引进瞬时加速度。定义:称为质点在时刻的瞬时加速度,简称加速度。 (1-12)结论:加速度等于速度对时间的一阶导数或位矢
5、对时间的二阶导数。式中: ,。、分别称为在x、y轴上的分量。的大小: 的方向: 与x轴正向夹角满足说明:沿的极限方向,一般情况下与方向不同(如不计空气阻力的斜上抛运动)。 瞬时量:,综上: 过程量:,矢量:,标量:,五、直线运动质点做直线运动,如图1-51、位移:沿+x轴方向;:沿-x轴方向。2、速度,沿+x轴方向;,沿-x轴方向。3、加速度,沿+x轴方向;,沿-x轴方向。由上可见,一维运动情况下,由、的正负就能判断位移、速度和加速度的方向,故一维运动可用标量式代替矢量式。六、运动的二类问题运动方程、等例1-1:已知一质点的运动方程为(SI),求: t=1s和t=2s时位矢; t=1s到t=2
6、s内位移; t=1s到t=2s内质点的平均速度; t=1s和t=2s时质点的速度; t=1s到t=2s内的平均加速度; t=1s和t=2s时质点的加速度。解: m m m m/s m/sm/s m/s2 m/s2例1-2:一质点沿x轴运动,已知加速度为(SI),初始条件为:时,m。求:运动方程。解:取质点为研究对象,由加速度定义有(一维可用标量式)由初始条件有:得: 由速度定义得:由初始条件得:即m由上可见,例1-1和例1-2分别属于质点运动学中的第一类和第二类问题。1-2圆周运动一、自然坐标系图2-1中,BAC为质点轨迹,时刻质点P位于A点,、分别为A点切向及法向的单位矢量,以A为原点,切向
7、和法向为坐标轴,由此构成的参照系为自然坐标系(可推广到三维)二、圆周运动的切向加速度及法向加速度1、切向加速度如图1-7,质点做半径为的圆周运动,时刻,质点速度 (2-1)式(2-1)中,为速率。加速度为 (2-2)式(2-2)中,第一项是由质点运动速率变化引起的,方向与共线,称该项为切向加速度,记为 (2-3)式(2-3)中, (2-4)为加速度的切向分量。结论:切向加速度分量等于速率对时间的一阶导数 。 2、法向加速度式(2-2)中,第二项是由质点运动方向改变引起的。如图1-8,质点由A点运动到B点,有因为,所以、夹角为。 (见图1-9)当时,有。因为,所以由A点指向圆心O,可有式(2-2
8、)中第二项为:该项为矢量,其方向沿半径指向圆心,称为法向加速度,记为 (2-5)大小为 (2-6)式(2-6)中,是加速度的法向分量。结论:法向加速度分量等于速率平方除以曲率半径 。3、总加速度 (2-7)大小: (2-8)方向:与夹角(见图1-10)满足4、一般曲线运动圆周运动的切向加速度和法向加速度也适用于一般曲线运动,只要把曲率半径看作变量即可。讨论: 如图1-10,总是指向曲线的凹侧。 时,质点做直线运动。此时时,有限,质点做曲线运动。此时三、圆周运动的角量描述1、角坐标如图1-11,时刻质点在A处,时刻质点在B处,是OA与x轴正向夹角,是OB与x轴正向夹角,称为时刻质点角坐标,为时间
9、间隔内角坐标增量,称为在时间间隔内的角位移。2、角速度平均角速度:定义: (2-9)称为平均角速度。平均角速度粗略地描述了物体的运动。为了描述运动细节,需要引进瞬时角速度。定义: (2-10) (2-11)结论:角速度等于角坐标对时间的一阶导数。说明:角速度是矢量,的方向与角位移方向一致。3、角加速度为了描述角速度变化的快慢,引进角加速度概念。(1)平均角加速度:设在内,质点角速度增量为定义: (2-12)称为时间间隔内质点的平均角加速度瞬时角加速度:定义: (2-13)称为时刻质点的瞬时角加速度,简称角加速度。 (2-14)结论:角加速度等于角速度对时间的一阶导数或等于角坐标对时间的二阶导数
10、。说明:角加速度是矢量,方向沿方向。4、线量与角量的关系把物理量、等称为线量,等称为角量。(1)、与关系如图2-7,时,有 即 (2-15)(2)、与关系式(2-15)两边对求一阶导数,有即 (2-16)(3)、与关系即 (2-17)1-3相对运动本节讨论一个质点的运动,用两个参考系来描述,并得出两个参考系中物理量(如:速度、加速度)之间的数学变换关系。一、相对位矢设有参照系E、M,其上固连的坐标系,如图1-13,二坐标系相应坐标轴平行,M相对于E运动。质点P相对E、M的位矢分别为、,相对位矢为: (2-18) 结论:P对E的位矢等于P对M的位矢与对E的位矢的矢量和。二、相对位移由(2-18)
11、有 (2-19)结论:P对E的位移等于P对M的位移与对E的位移的矢量和。三、相对速度将式(2-18)两边对时间求一阶导数有 (2-20)结论:P对E的速度等于P对M的速度与M对E的速度的矢量和。四、相对加速度由式(2-20)对时间求一阶导数有 (2-21)结论:P对E的加速度等于P对M的加速度与M对E的加速度的矢量和。例1-3:质点做平面曲线运动,其位矢、加速度和法向加速度大小分别为,和,速度为,试说明下式正确的有哪些?解:因为标量矢量,所以不对。又,而,故不对。而,因此正确。由于中为曲率半径,而这里为位矢的大小,不一定是曲率半径,所以不对。例1-4:在一个转动的齿轮上,一个齿尖P沿半径为的圆
12、周运动,其路程随时间的变化规律为,其中,都是正的常数,则时刻齿尖P的速度和加速度大小为多少?解:例1-5:一质点运动方程为(SI),求:(1)(2)解: m/sm/s2(注意此方法,给定运动方程,先求出、,之后求,这样比用求简单)例1-6:抛射体运动,抛射角为,初速度为,不计空气阻力,问运动中变化否?、变否?任意位置、为多少?抛出点、最高点、落地点、各为多少?曲率半径为多少?解:如图所取坐标,x轴水平,y轴竖直,为抛射点。质点受重力恒力作用,有,故不变.,而改变,变。而不变,变,变。任意位置P处,质点的、为抛射点处,有最高点:,落地点:与出射点对称 例1-7:一质点从静止()出发,沿半径为m的
13、圆周运动,切向加速度大小不变,为m/s2,在时刻,其总加速度恰与半径成45角,求解:依题意知,与夹角为45,有 由有得: s例1-8:某人骑自行车以速率向西行使,北风以速率吹来(对地面),问骑车者遇到风速及风向如何?解:地为静系E,人为动系M。风为运动物体P绝对速度:,方向向南;牵连速度:,方向向西;求相对速度方向如何? 有图1-15。 45 方向:来自西北。或东偏南45。第二章 牛顿运动定律2-1牛顿运动定律 力一、牛顿运动定律1、第一定律时, (2-1)说明:反映物体的惯性,故叫做惯性定律。给出了力的概念,指出了力是改变物体运动状态的原因。2、第二定律 (2-2)说明: 为合力 为瞬时关系
14、 矢量关系 只适应于质点 解题时常写成(直角坐标系) (2-3) (自然坐标系) (2-4)3、第三定律 (2-5) 说明: 、在同一直线上,但作用在不同物体上。 、同有同无互不抵消。二、几种常见的力1、力力是指物体间的相互作用。2、力学中常见的力(1)万有引力 (2-6)即任何二质点都要相互吸引,引力的大小和两个质点的质量、的乘积成正比,和它们距离的平方成反比;引力的方向在它们连线方向上。说明:通常所说的重力就是地面附近物体受地球的引力。(2)弹性力弹簧被拉伸或压缩时,其内部就产生反抗力,并企图恢复原来的形状,这种力称为弹簧的恢复力。(3)摩擦力 当一物体在另一物体表面上滑动或有滑动的趋势时
15、,在接触面上有一种阻碍它们相对滑动的力,这种力称为摩擦力。3、两种质量由可证明: ,适选单位可有 。以后不区别二者,统称为质量。2-2力学单位制和量纲(自学)2-3惯性系 力学相对性原理一、惯性参照系在运动学中,参照系可任选,在应用牛顿定律时,参照系不能任选,因为牛顿运动定律不是对所有的参照系都适用。如图2-1,假设火车车厢的桌面是水平光滑的,在桌面上放一小球,显然小球受合外力=0,当火车以加速度向前开时,车上人看见小球以加速度向后运动。而对地面上人来说,小球的加速度为零。如果取地参系,小球的合外力等于零,故此时牛顿运动定律(第一、二定律)成立。如果取车厢为参照系,小球的加速度,而作用小球的合
16、外力,故此时牛顿运动定律(第一、第二定律)不成立。凡是牛顿运动定律成立的参照系,称为惯性系。牛顿定律不成立的参照系称为非惯性系。说明:(1)一个参照系是否为惯性系,要由观察和实验来判断。天文学方面的观察证明,以太阳中心为原点,坐标轴的方向指向恒星的坐标轴是惯性系。理论证明,凡是对惯性系做匀速直线运动的参照系都是惯性系。(2)地球是否为惯性系?因为它有自转和公转,所以地球对太阳这个惯性系不是作匀速直线运动的,严格讲地球不是惯性系。但是,地球自转和公转的角速度都很小,故可以近似看成是惯性系。二、力学相对性原理在1-3中已讲过,参照系E与M,设E是一惯性系,M相对E以做匀速直线运动,即OM也是一惯性
17、系,二参照系相应坐标轴平行,在E、M上牛顿第二定律均成立,设一质点P1质量为m,相对E、M有 (2-7)设P相对E、M的速度分别为、,有 (2-8)上式两边对求一阶导数有 (2-9)可见,P对E和M的加速度相同。综上可知,对于不同的惯性系,牛顿第二定律有相同的形式(见(2-7),在一惯性系内部所做的任何力学实验,都不能确定该惯性系相对其它惯性系是否在运动(见(2-9),这个原理称为力学相对性原理或伽利略相对性原理。2-4牛顿定律应用举例例2-1: 如图2-2,水平地面上有一质量为M的物体,静止于地面上。物体与地面间的静摩擦系数为,若要拉动物体,问最小的拉力是多少?沿何方向?解:研究对象:M受力
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 教案 141
限制150内