大学生创新创业训练计划项目结题报告.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《大学生创新创业训练计划项目结题报告.doc》由会员分享,可在线阅读,更多相关《大学生创新创业训练计划项目结题报告.doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、- .一种集成式自供电纳米化学传感器的设计和制作工程成员:何旺球1426410514 王鹏云1426410408 俊贤1326410232 黄家仪1326410116指导教师:祝元坤摘要:本工程以石墨烯作为根本功能单元,设计并制备一种新型的集成式化学分子驱动自供电传感器件;超薄二维纳米材料石墨烯作为根本功能单元制备新一代的自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。石墨烯局部被聚合物薄膜所覆盖且另一局部暴露,当器件接触极性分子时,可以产生明显的电信号。因此,本工程的研究具有一定应用前景和重要学术价值。该类自供电传感器件可能应用于生产微型纳米传感器,具有自主创新知识产权。
2、1引言近年来,随着纳米材料及纳米科学技术研究的不断深入,各种微纳电子器件不断被研究开发,并在军事、生物医学、环境监测等领域展现出十分诱人的应用前景1。微纳电子器件不仅尺寸小,而且具有功耗低、速度快、易于大规模集成、可移动等特点,但微纳电子器件需要有微尺度电源系统来供给电能,来维持正常工作。随着电子产品小型化,亟待开发即能为之提供能量并且小、轻、具有柔性的自供电传感器件。如果微电源器件能够持续收集环境中的能量并转换为电能,将会永久性解决电池耗尽的问题。因此,开发具有能量转换功能的微电源,并与传感器等器件集成构建自供电系统,是非常迫切的。可穿戴、物联网、智慧城市等新兴产业的开展将推动微纳电子器件市
3、场的迅速开展,牵引微电源产品的技术变革和不断创新。微纳自供电器件是当今的研究热点,目前的研究集中在以下几点:1不断提高能量转换效率。如何在减小尺寸的同时保持高的能量转换效率,需要新材料和新工艺。2具有柔韧性。未来可穿戴、可移植等器件的开展需要柔性的器件与之配套。3易于集成。为满足自供电、自供能驱动等系统的需求,微电源器件应易于和传感器等进展集成。4可从环境中持续捕获能量。微电源器件不仅要有能量存储功能,还要能持续将环境中的能量转换为电能。自然界不缺能源,关键在于如何将能量有效收集并转换为电能,这需要不断开发新型的自供电传感器件,将环境中潜在的光能、生物能、热能、振动能、电磁能等能量源转换为电能
4、。微纳自供电传感器件的国外研发现状:哈佛大学C.M.Lieber教授采用Ge/Si核壳纳米阵列制作了太阳能电池2。美国佐治亚理工学院Z.L.Wang教授在2006年提出了纳米发电机的概念,利用ZnO纳米线的压电效应实现机械能到电能的转换,并在之后的研究中开展了压电电子学的概念3。最近,他们在单个原子厚度的二硫化钼观察到了压电效应,并研制出全球最纤薄的发电机兼力学感知设备,其不仅透明轻质且可弯曲和拉伸4。复旦大学的慧胜教授成功制备出可拉伸的线状超级电容器,为可穿戴智能设备中电能的供给提供了一个解决思路5。交通大学利用非硅微加工技术制备了基于MEMS的压电发电机并表征了其俘能效果。中国科学院纳米所
5、在新型柔性可穿戴仿生触觉传感器即人造仿生电子皮肤方面做了系列工作6。航空航天大学郭万林教授首次实现石墨烯外表拖动海水液滴发电, 并提醒了其中的物理机制,为石墨烯在能源领域的应用开辟了新方向7。中科院金属所设计并制备出基于碳纳米管/石墨烯的柔性能量存储与转换器件,并发现其具有循环稳定性好、可快速充放电、可弯折等优异性能8。大学和化物所在石墨烯PN结的调控调制掺杂生长与光电转换器件研究中进展了前沿性探索9。在之前的研究工作中,我们团队提出一种可将环境中的化学能转换为电能的新型器件分子驱动自供电传感器件,当器件所处环境中化学分子状态发生变化时可触发电信号,从而实现电能的捕获。当极性化学分子接触局部覆
6、盖的ZnO纳米线时,ZnO覆盖端和暴露端由于功函数不同而产生部电势差10。利用这一原理可制成自供电的酒精检测仪,也可检测不同浓度、不同类别的有机化学试剂11-14,当人吸气-呼气循环作用于器件时,如图1所示,在无任何外接电源的情况下,器件可产生 2-8 nA 的脉冲电流信号,交换电极可获得相反方向的电流信号,这意味着电流信号非测试系统误差或电阻变化引起的。器件能将人体连续的吸气-呼气转换为电信号,这意味着人呼吸也可以发电,无疑是令人振奋的。以化学分子驱动器件产生电能是继光电、热电、压电效应之后的一种全新的器件设计理念,包含丰富的物理涵;基于这种理念构建的器件未来在物联网传感器、可穿戴器件、生物
7、医疗器件等领域的自供电检测/自驱动系统构建等方面有巨大的应用前景。 图1 吸气-呼气循环作用于ZnO阵列自供电传感器件所产生的电信号超薄二维纳米材料,如石墨烯等,因其独特的物理化学特性成为材料界最为活泼的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景15。石墨烯的费米能级可以通过原子分子掺杂和气体分子的吸附进展有效调控。基于这一点,我们提出利用超薄二维纳米材料石墨烯作为根本功能单元制备新一代的自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。前期的研究发现,石墨烯局部被聚合物薄膜所覆盖,局部暴露,当器件的暴露局部接触乙醇分子
8、时,可以产生35 nA左右的电信号16-18。初步的研究结果说明石墨烯作为根本功能单元制备自供电化学传感器件是可行的。本申请工程提出以石墨烯作为功能单元制备自供电化学传感器件,有望获得高转换效率、超小尺寸、稳定的微电源器件,为自供电式微纳器件设计及性能优化打下根底。理论和实验结果说明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进展有效调控前期研究工作从实验上证明了利用半导体功函数调控实现能量捕获的可行性,但是,器件要取得实际应用,必须要有高的能量转换效率,且能实现持续电能转换,这就需要对器件性能影响因素及器件工作机制进展深入研究19。除此之外,ZnO材料化学稳定性差也是器件实用化的重要
9、瓶颈。因此,有必要寻找新的替代材料实现类似能量转换功能。在本工程中,我们将在之前研究的根底上,进一步深化器件工作机制的研究,推进分子驱动自供电传感器件的实用化。石墨烯作为器件功能单元的可行性与优势:近十年来,石墨烯因其独特的物理化学特性成为材料界最为活泼的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景20-23。理论和实验结果说明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进展有效调控24。基于这一点,在本工程中,我们提出利用石墨烯作为根本功能单元制备新一代的分子驱动能量转换及自供电传感器件,使器件能感受到环境中化学分子状态的改变而输
10、出电信号。在前期的研究中,我们利用石墨烯制备成器件,石墨烯局部被聚合物薄膜所覆盖,局部暴露。当工作端接触乙醇分子时,工作端工作函数发生变化,而密封端工作函数仍保持不变;由于同一种材料费米能级必须处于同一水平,由于载流子的迁移,器件两端产生接触电势差25。实验结果说明,乙醇液滴可使器件可产生35 nA 左右的电信号,这说明石墨烯作为根本功能单元制备分子驱动自供电传感器件是可行的。以石墨烯制备器件具有以下优势:首先,二维石墨烯具有大的比外表积,对化学分子有更高的敏感性,更容易进展外表电势的调节;其次,石墨烯具有良好的机械性质,可以做成柔性器件;再次,石墨烯的电子输运性质和功函数可在很大围调控,外表
11、改性、应力、化学环境等都可以使石墨烯功函数发生变化。综合这些优势和前期研究结果,我们认为,以石墨烯作为功能单元制备分子驱动自供电传感器件,有望获得高转换效率、超小尺寸、柔性、稳定的微电源器件,满足实际需求26-27。2 实验局部2.1 实验药品及气体固体材料:超薄二维纳米材料石墨烯所用极性有机液体:无水乙醇、异丙醇、丙酮、二氯甲烷、吡啶、二甲基甲酰胺主要测试光照:黑暗、日光灯、紫外灯365nm 2. 2 实验设备及仪器本实验所用到的设备仪器:2.2.1半导体参数分析仪 半导体参数分析仪是一个模块化、可定制、高度一体化的参数分析仪,可同时进展电流-电压 (I-V)、电容-电压 (C-V) 和超快
12、脉冲 I-V 电学测试。使用其可选的 多通道开关模块,可轻松地在 I-V 和 C-V 测量之间切换,而无需重新布线或抬起探针。半导体参数分析仪是最高性能的分析仪,可加快用于材料研究、半导体器件设计、工艺开发或生产的复杂器件的测试。使用时,先将器件连接在参数分析仪上,翻开电源和电脑上的系统。设置程序,测试器件的伏安特性曲线、转移特性曲线,探究器件的迁移率、载流子浓度等根本的电学性能和半导体材料的电流电压随时间的变化曲线。图2 a半导体探针台和b半导体参数分析仪2.2.2X射线衍射仪(XRD)X射线衍射仪(X-ray diffraction,XRD),其工作原理是根据布拉格方程2dsinn,图3所
13、示,实验仪器根据接收的角度变化信息及其强度分布信息可以得到晶体的点阵平面间距和原子排布信息,分析晶体的点阵平面间距和原子排布信息便能获得材料成分和部原子(分子) 构造等信息。图3 布拉格衍射示意图本论文中采用的XRD型号为D8-ADVANCE,由德国Bruker-AXS公司生产,如图4所示。衍射实验使用的测量电压和电流分别为40kV、30 mA,实验中的衍射X射线为Cu-K射线,射线波长为0.1541 nm。图4 D8-ADVANCE型转靶X射线衍射仪2.2.3扫描电子显微镜(SEM)扫描电子显微镜可以方便的得到所制备材料的形貌特征及构造特征,是材料研究的关键。在使用过程中,其利用多种信号转换
14、,得到经电子束激发相应材料外表产生次级电子信号,利用这种电子信号来完成对材料的形貌的表征形成我们所看到的图像特征。对导电性较差的样品,为防止观测样品外表时,因积累电荷从而影响观测,通常需要喷涂一层重金属薄膜。本论文采用美国FEI公司生产的QuantaFEG450型场发射扫描电子显微镜(Field-Emission Scanning Electron Microscopy, FE-SEM)对样品进展外表形貌和构造的表征,主要测试参数为:电子枪和样品的距离10 mm,加速电压为30 kV,电流为10A。2.2.4石墨烯等二维超薄构造纳米功能材料的制备近十年来,石墨烯因其独特的物理化学特性成为材料界
15、最为活泼的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景。理论和实验结果说明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进展有效调控。基于这一点,在本工程中,我们提出利用石墨烯作为根本功能单元制备新一代的分子驱动能量转换及自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。采用化学气相沉积方法以及Langmuir-Blodget方法制备了大面积氧化石墨烯材料。化学气相沉积法是制备石墨烯常用的方法,该方法的优点在于易实现石墨烯的大面积合成,常以铜、镍、铂等金属为衬底,通过渗碳冷却、外表催化等工艺制备得到大面积连续的石墨烯
16、薄膜。实验中,以C2H4为碳源,H2为载气,以Ni和Cu为催化剂,生长温度控制在800-1000,通过调控对开式管式炉中的碳源、压强、温度以及生长时间,控制石墨烯的生长厚度。利用化学气相沉积方法,获得了外表连续的大面积石墨烯材料。为了进一步探索并优化化学气相沉积实验过程,我们采用化学气相沉积方法制备了大面积二维超薄半导体纳米材料,并以此二维超薄构造的半导体纳米材料制备类似的化学分子驱动自供电传感器件,借此与高质量石墨烯材料的制备方法和器件制作工艺类比,优化化学分子驱动能量转换及自供电传感器件性能,并深入探究器件工作机理。采用化学气相沉积方法,制备了具有二维超薄构造的氧化锌以及二硫化钼半导体纳米
17、材料。探索了具有较大比外表积的二维超薄构造的半导体纳米材料最优化生长工艺;研究了不同升温速度、生长温度、生长时间、掺杂元素、反响气体及载气比例以及流量等条件,制备的大面积二维超薄构造半导体纳米材料的成分、构造、形貌以及光、电、机械等性能;实现了在不同外表状态的硅、二氧化硅以及不同晶体取向的蓝宝石衬底上生长高质量大面积二维超薄构造半导体纳米材料。在实验研究上,以化学气相沉积法生长的大片石墨烯和化学剥离的氧化石墨烯或复原氧化石墨烯为实验对象,综合利用带环境气氛的Kelvin探针显微镜KPFM、聚焦离子束刻蚀FIB等材料领域先进样品表征、加工手段开展研究;归纳分析化学分子接触时石墨烯功函数变化的微观
18、机制与器件的宏观行为,为基于功函数调控的微纳能量转换器件的材料、器件设计及性能优化打下根底。通过研究生长条件及复合工艺,对石墨烯材料以及二维超薄构造半导体纳米材料构造、成分以及形貌、光学和电学等性能,获得了控制大面积二维超薄构造纳米材料的最优化生长工艺。2.2.5基于二维超薄构造纳米材料的化学分子驱动自供电传感器件制作以化学气相沉积制备的大面积石墨烯材料和Langmuir-Blodget方法制备的大面积氧化石墨烯薄膜为功能单元,制作化学分子驱动的自供电传感器件。根本器件制备工艺流程如图5所示:1选择CVD生长的大片单晶石墨烯,转移到Si/SiO2衬底上。综合拉曼、透射电镜、X射线衍射仪、半导体
19、参数分析仪等手段表征所制备的石墨烯的微观构造及物理性质;2用铝箔做掩膜遮住中间局部石墨烯,用电子束蒸发法在石墨烯两端镀电极,用导线将电极引出以备测试; 3用铝箔做掩模,遮挡一半石墨烯,通过低压气相沉积法在器件外表旋涂一层派瑞林(Parylene C) 覆盖另一半石墨烯。图5石墨烯化学传感器件制作的工艺路线图 (a) 在铜上生长的石墨烯;(b) 将石墨烯转移到Si/SiO2衬底上;(c)用铝箔做掩膜覆盖石墨烯中间局部;(d)用铝箔做掩膜蒸镀两端电极;(e)引出两侧电极,用铝箔做掩膜,沉积parylene C;(f)去掉掩膜得到所需器件。经外引导线,获得了以大面积石墨烯为功能单元的聚合物半遮盖式化
20、学分子驱动自供电传感器件。此外,选取了具有较高外表积的氧化锌和二硫化钼等二维超薄构造半导体纳米片材料,制作大面积二维超薄构造纳米材料的化学分子驱动自供电传感器件。通过设计掩膜版的位置和大小,镀制电极,涂覆半遮盖式聚合物薄膜等步骤,制备了化学分子驱动自供电传感器件。图6自供电传感器的构造图3 结果与讨论3.1超薄二维半导体纳米材料石墨烯根本电学性能研究化学分子驱动自供电传感器件的性能评价主要涉及对其根本电学性能以及在化学有机溶液作用下输出电学性能的测试。基于此,我们首先测试了大面积石墨烯基化学分子驱动自供电传感器件的根本电学性能:包括石墨烯化学分子驱动自供电传感器件的漏电流行为,以此评价器件封装
21、完好性以及相关介质层的绝缘性能等;在此根底之上,通过测试石墨烯化学分子驱动自供电传感器件的伏安特性曲线,获得了石墨烯化学分子驱动自供电传感器件的工作特性以及电极接触类型等关键器件参数,如图7a是超薄二维半导体纳米材料石墨烯的伏安特性曲线;最后,在P型硅/二氧化硅介质层衬底的作用,通过调控背底栅极电压,测试了石墨烯化学分子驱动自供电传感器件的转移特性曲线,测试了器件的半导体类型和栅极电压的调控作用等器件参数,图7b是栅压对石墨烯伏安特性曲线的调控作用。作为比照,对基于大面积二维构造超薄纳米材料的化学分子驱动自供电传感器件进展了类似的根本电学性能测试。 a b图7氧化石墨烯自供电传感器件的电学性能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学生 创新 创业 训练 计划 项目 报告
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内