人教版-小学数学鸡兔同笼应用题-31(湖北黄冈名校-优质试题)(共7页).doc
《人教版-小学数学鸡兔同笼应用题-31(湖北黄冈名校-优质试题)(共7页).doc》由会员分享,可在线阅读,更多相关《人教版-小学数学鸡兔同笼应用题-31(湖北黄冈名校-优质试题)(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 鸡兔同笼问题【含义】 这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。【数量关系】第一鸡兔同笼问题: 假设全都是鸡,则有 兔数(实际脚数2鸡兔总数)(42) 假设全都是兔,则有 鸡数(4鸡兔总数实际脚数)(42) 第二鸡兔同笼问题: 假设全都是鸡,则有 兔数(2鸡兔总数鸡与兔脚之差)(42)假设全都是兔,则有 鸡数(4鸡兔总数鸡与兔脚之差)(42) 【解题思路和方法】 解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如
2、果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。【例题精讲】 例1 长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?解 假设35只全为兔,则 鸡数(43594)(42)23(只) 兔数352312(只) 也可以先假设35只全为鸡,则 兔数(94235)(42)12(只) 鸡数351223(只)答:有鸡23只,有兔12只。例2 2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解 此题实际上是改头换面的“鸡兔同笼”问题。“每亩菠菜施肥(12
3、)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(35)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。假设16亩全都是菠菜,则有白菜亩数(91216)(3512)10(亩)答:白菜地有10亩。例3 李老师用69元给学校买作业本和日记本共45本,作业本每本 3 .20元,日记本每本0.70元。问作业本和日记本各买了多少本? 解 此题可以变通为“鸡兔同笼”问题。假设45本全都是日记本,则有 作业本数(690.7045)(3.200.70)15(本) 日记本数451530(本) 答:作业本有15本,日记本有30本。例4 (第二鸡兔同笼问题)鸡兔
4、共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?解 假设100只全都是鸡,则有 兔数(210080)(42)20(只) 鸡数1002080(只)答:有鸡80只,有兔20只。例5 有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?解 假设全为大和尚,则共吃馍(3100)个,比实际多吃(3100100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以“小”换“大”,一个小和尚换掉一个大和尚可减少馍(31/3)个。因此,共有小和尚 (3100100)(31/3)75(人) 共有大和尚 1007525(人) 答:共有大和尚2
5、5人,有小和尚75人。鸡兔同笼问题五种基本公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。或者是(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一 (100-236)(4-2)=14(只)兔;36-14=22(只)鸡。解二 (436-100)(4-2)=22(只)鸡;36-22=14(只)兔。(答 略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数总头数-脚数之差)(每只
6、鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不
7、合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一 (41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)1000-1852519=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)(5)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 小学 数学 应用题 31 湖北 黄冈 名校 优质 试题
限制150内