八个有趣模型——搞定空间几何体的外接球与内切球(学生版)(共9页).doc
《八个有趣模型——搞定空间几何体的外接球与内切球(学生版)(共9页).doc》由会员分享,可在线阅读,更多相关《八个有趣模型——搞定空间几何体的外接球与内切球(学生版)(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上八个有趣模型搞定空间几何体的外接球与内切球类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径,三棱锥与长方体的外接球相同) 方法:找三条两两垂直的线段,直接用公式,即,求出例1 (1)已知各顶点都在同一球面上的正四棱柱的高为,体积为,则这个球的表面积是( )A B C D(2)若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是 (3)在正三棱锥中,分别是棱的中点,且,若侧棱,则正三棱锥外接球的表面积是 。解:引理:正三棱锥的对棱互垂直,证明如下:如图(3)-1,取的中点,连接,交于,连接,则是底面正三角形的中心,平面,平面,同理:,即正三棱锥的
2、对棱互垂直,本题图如图(3)-2, ,平面,平面,故三棱锥的三棱条侧棱两两互垂直,即,外接球的表面积是(4)在四面体中,则该四面体的外接球的表面积为( ) (5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是 (6)已知某几何体的三视图如图上右所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为 类型二、垂面模型(一条直线垂直于一个平面)1题设:如图5,平面解题步骤:第一步:将画在小圆面上,为小圆直径的一个端点,作小圆的直 径,连接,则必过球心;第二步:为的外心,所以平面,算出小圆的半径(三角形的外接圆直径算法:利用正弦定理,得
3、),;第三步:利用勾股定理求三棱锥的外接球半径:;2题设:如图6,7,8,的射影是的外心三棱锥的三条侧棱相等 三棱锥的底面在圆锥的底上,顶点点也是圆锥的顶点 解题步骤:第一步:确定球心的位置,取的外心,则三点共线;第二步:先算出小圆的半径,再算出棱锥的高(也是圆锥的高);第三步:勾股定理:,解出.方法二:小圆直径参与构造大圆。例2 一个几何体的三视图如右图所示,则该几何体外接球的表面积为A B C D以上都不对 类型三、切瓜模型(两个平面互相垂直) 1题设:如图9-1,平面平面,且(即为小圆的直径)第一步:易知球心必是的外心,即的外接圆是大圆,先求出小圆的直径;第二步:在中,可根据正弦定理,求
4、出。2如图9-2,平面平面,且(即为小圆的直径) 3如图9-3,平面平面,且(即为小圆的直径),且的射影是的外心三棱锥的三条侧棱相等三棱的底面在圆锥的底上,顶点点也是圆锥的顶点解题步骤:第一步:确定球心的位置,取的外心,则三点共线;第二步:先算出小圆的半径,再算出棱锥的高(也是圆锥的高);第三步:勾股定理:,解出4如图9-3,平面平面,且(即为小圆的直径),且,则利用勾股定理求三棱锥的外接球半径:;例3 (1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为,则该球的表面积为 。(2)正四棱锥的底面边长和各侧棱长都为,各顶点都在同一个球面上,则此球的体积为 (3)在三棱锥中,,侧棱与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 八个 有趣 模型 搞定 空间 几何体 外接 内切球 学生
限制150内