2022年初中几何知识点总结非常全 .pdf
《2022年初中几何知识点总结非常全 .pdf》由会员分享,可在线阅读,更多相关《2022年初中几何知识点总结非常全 .pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、初中几何知识点总结非常全1 证明 (一) 1、本套教材选用如下命题作为公理: (1)、两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。(2)、两条平行线被第三条直线所截,同位角相等。(3)、两边及其夹角对应相等的两个三角形全等。(4)、两角及其夹边对应相等的两个三角形全等。(5)、三边对应相等的两个三角形全等。(6)、全等三角形的对应边相等、对应角相等。此外 ,等式的有关性质与不等式的有关性质都可以瞧做公理。2、平行线的判定定理公理两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成 :同位角相等 ,两直线平行。定理两条直线被第三条直线所截,如果同旁内角互补,那
2、么这两条直线平行。简单说成 :同旁内角互补 ,两直线平行。定理两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成 :内错角相等 ,两直线平行。3、平行线的性质定理公理两条平行线被第三条直线所截,同位角相等。简单说成 :两直线平行 ,同位角相等。定理两条平行线被第三条直线所截,内错角相等。简单说成 :两直线平行 ,内错角相等。定理两条平行线被第三条直线所截,同旁内角互补。简单说成 :两直线平行 ,同旁内角互补。如果两条直线都与第三条直线平行,那么这两条直线也互相平行。4、三角形内角与定理三角形三个内角的与等于180。5、三角形内角与定理的推论三角形的一个外角等于与它不相邻的两
3、个内角的与。三角形的一个外角大于任何一个与它不相邻的内角。证明(二) 一、公理 (1)三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。(2)两边及其夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)。(3)两角及其夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA ”)。(4)全等三角形的对应边相等、对应角相等。推论 :两角及其中一角的对边对应相等的两个三角形全等(可简写成“角角边” 或 “AAS ” )。二、等腰三角形1、等腰三角形的性质(1)等腰三角形的两个底角相等(简称 :等边对等角 ) (2)等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(
4、三线合一 )。等腰三角形的其她性质: 等腰直角三角形的两个底角相等且等于45等腰三角形的底角只能为锐角,不能为钝角 (或直角 ),但顶角可为钝角(或直角 )。等腰三角形的三边关系:设腰长为 a,底边长为 b,则2ba 等腰三角形的三角关系:设顶角为顶角为A,底角为 B、C,则A=180 2B,B=C=2180A2、等腰三角形的判定方法(1)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称 :等角对等边 )。(2)有两条边相等的三角形就是等腰三角形、三、等边三角形性质 :(1)等边三角形的三个角都相等,并且每个角都等于60。(2)三线合一判定方法 :(1)三条边都相等的三角形就是等边
5、三角形(2)三个角都相等的三角形就是等边三角形(3)有一个角就是60的等腰三角形就是等边三角形。四、直角三角形(一 )、直角三角形的性质1、直角三角形的两个锐角互余2、在直角三角形中,30 角所对的直角边等于斜边的一半。3、在直角三角形中, 如果一条直角边等于斜边的一半, 那么这条直角边所对的锐角等于304、直角三角形斜边上的中线等于斜边的一半5、勾股定理 : 直角三角形两直角边a,b 的平方与等于斜边c 的平方 , 即222cba其它性质 : 1、直角三角形斜边上的高线将直角三角形分成的两个三角形与原三角形相似。2、常用关系式 : 由三角形面积公式可得: 两直角边的积 =斜边与斜边上的高的积
6、( 等面积法 ) ( 二) 、直角三角形的判定 1、有一个角就是直角的三角形就是直角三角形。2、如果三角形一边上的中线等于这边的一半, 那么这个三角形就是直角三角形。3、勾股定理的逆定理如果三角形的三边长a,b,c有关系222cba, 那么这个三角形就是直角三角形。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 7 页 - - - - - - - - - - 初中几何知识点总结非常全2 ( 三 ) 直角三角形全等的判定: 对于特殊的直角三角形,判定它们全等时,还有 HL 定理 (斜边、直角边定
7、理):有斜边与一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”) 五、角的平分线及其性质与判定1、角的平分线 :从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。2、角的平分线的性质定理:角平分线上的点到这个角的两边的距离相等。定理 :三角形的三条角平分线相交于一点(三角形的内心),并且这一点到三条边的距离相等。3、角的平分线的判定定理: 在一个角的内部,且到角的两边距离相等的点在这个角的平分线上。六、线段垂直平分线的性质与判定1、线段的垂直平分线:垂直于一条线段并且平分这条线段的直线就是这条线段的垂直平分线。线段垂直平分线的性质定
8、理:线段垂直平分线上的点与这条线段两个端点的距离相等。定理 :三角形三条边的垂直平分线相交于一点(三角形的外心),并且这一点到三个顶点的距离相等。线段垂直平分线的判定定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。七、反证法八、互逆命题、互逆定理1、在两个命题中,如果一个命题的条件与结论分别就是另一个命题的结论与条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题。2、如果一个定理的逆命题经过证明就是真命题,那么它也就是一个定理,这两个定理称为互逆定理 ,其中一个定理称为另一个定理的逆定理。证明 (三) 一、平行四边形 1、平行四边形的定义两组对边分别平行的四边
9、形叫做平行四边形。2、平行四边形的性质(1) 平行四边形的对边平行且相等。(2) 平行四边形相邻的角互补, 对角相等(3) 平行四边形的对角线互相平分。(4) 平行四边形就是中心对称图形, 对称中心就是对角线的交点。常用点 :(1)若一直线过平行四边形两对角线的交点, 则这条直线被一组对边截下的线段的中点就是对角线的交点, 并且这条直线二等分此平行四边形的面积。(2) 推论 : 夹在两条平行线间的平行线段相等。3、平行四边形的判定(1) 定义 : 两组对边分别平行的四边形就是平行四边形(2) 定理 1: 两组对角分别相等的四边形就是平行四边形(3) 定理 2: 两组对边分别相等的四边形就是平行
10、四边形(4) 定理 3: 对角线互相平分的四边形就是平行四边形(5) 定理 4: 一组对边平行且相等的四边形就是平行四边形4、平行四边形的面积S平行四边形=底边长高 =ah 二、矩形 1、矩形的定义有一个角就是直角的平行四边形叫做矩形。2、矩形的性质(1) 矩形的对边平行且相等(2) 矩形的四个角都就是直角(3) 矩形的对角线相等且互相平分(4) 矩形既就是中心对称图形又就是轴对称图形; 对称中心就是对角线的交点( 对称中心到矩形四个顶点的距离相等); 对称轴有两条 , 就是对边中点连线所在的直线。3、矩形的判定(1) 定义 : 有一个角就是直角的平行四边形就是矩形(2) 定理 1: 有三个角
11、就是直角的四边形就是矩形(3) 定理 2: 对角线相等的平行四边形就是矩形4、矩形的面积S矩形=长宽 =ab 三、菱形 1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1) 菱形的四条边相等, 对边平行(2) 菱形的相邻的角互补, 对角相等(3) 菱形的对角线互相垂直平分, 并且每一条对角线平分一组对角(4) 菱形既就是中心对称图形又就是轴对称图形; 对称中心就是对角线的交点( 对称中心到菱形四条边的距离相等); 对称轴有两条 , 就是对角线所在的直线。3、菱形的判定(1) 定义 : 有一组邻边相等的平行四边形就是菱形(2) 定理 1: 四边都相等的四边形就是菱形(3) 定理
12、2: 对角线互相垂直的平行四边形就是菱形4、菱形的面积S菱形=底边长高 =两条对角线乘积的一半精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 7 页 - - - - - - - - - - 初中几何知识点总结非常全3 四、正方形 (310分) 1、正方形的定义有一组邻边相等并且有一个角就是直角的平行四边形叫做正方形。2、正方形的性质(1) 正方形四条边都相等,对边平行(2) 正方形的四个角都就是直角(3) 正方形的两条对角线相等, 并且互相垂直平分, 每一条对角线平分一组对角(4) 正方形既就
13、是中心对称图形又就是轴对称图形; 对称中心就是对角线的交点; 对称轴有四条 , 就是对角线所在的直线与对边中点连线所在的直线。3、正方形的判定判定一个四边形就是正方形的主要依据就是定义, 途径有两种 : 先证它就是矩形, 再证它就是菱形。先证它就是菱形, 再证它就是矩形。4、正方形的面积设正方形边长为a, 对角线长为b S正方形=222ba五、等腰梯形1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。2、等腰梯形的性质(1) 等腰梯形的两腰相等,两底平行。(2) 等腰梯形同一底上的两个角相等, 同一腰上的两个角互补。(3) 等腰梯形的对角线相等。(4) 等腰梯形就是轴对称图形, 它只有一条对称轴,
14、 即两底的垂直平分线。3、等腰梯形的判定(1) 定义 : 两腰相等的梯形就是等腰梯形(2) 定理 : 在同一底上的两个角相等的梯形就是等腰梯形(3) 对角线相等的梯形就是等腰梯形。( 选择题与填空题可直接用) 六、三角形中的中位线1、三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线。2、三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。3、常用结论 :任一个三角形都有三条中位线,由此有 : 结论 1:三条中位线组成一个三角形,其周长为原三角形周长的一半。结论 2:三条中位线将原三角形分割成四个全等的三角形。结论 3:三条中位线将原三角形划分出三个面积相等的平行四边形。结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初中几何知识点总结非常全 2022 年初 几何 知识点 总结 非常
限制150内