2022年初中几何证明题思路及做辅助线总结 .pdf
《2022年初中几何证明题思路及做辅助线总结 .pdf》由会员分享,可在线阅读,更多相关《2022年初中几何证明题思路及做辅助线总结 .pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、中考几何题证明思路总结一、证明两线段相等 1. 两全等三角形中对应边相等。 2. 同一三角形中等角对等边。 3. 等腰三角形顶角的平分线或底边的高平分底边。 4. 平行四边形的对边或对角线被交点分成的两段相等。 5. 直角三角形斜边的中点到三顶点距离相等。 6. 线段垂直平分线上任意一点到线段两段距离相等。 7. 角平分线上任一点到角的两边距离相等。 8. 过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。二、证明两角相等1. 两全等三角形的对应角相等。2. 同一三角形中等边对等角。3. 等腰三角形中,底边上的中线(或高)平分顶角。4. 两条平行线的同位角、内错角或平行四边形的对角
2、相等。5. 同角(或等角)的余角(或补角)相等。6. 同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。三、证明两直线平行1. 垂直于同一直线的各直线平行。2. 同位角相等,内错角相等或同旁内角互补的两直线平行。3. 平行四边形的对边平行。4. 三角形的中位线平行于第三边。5. 梯形的中位线平行于两底。6. 平行于同一直线的两直线平行。 7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。四、证明两直线互相垂直1. 等腰三角形的顶角平分线或底边的中线垂直于底边。2. 三角形中一边的中线若等于这边一半,则这一边所对的角是直角
3、。3. 在一个三角形中,若有两个角互余,则第三个角是直角。4. 邻补角的平分线互相垂直。5. 一条直线垂直于平行线中的一条,则必垂直于另一条。6. 两条直线相交成直角则两直线垂直。7. 利用到一线段两端的距离相等的点在线段的垂直平分线上。8. 利用勾股定理的逆定理。9. 利用菱形的对角线互相垂直。10. 在圆中平分弦(或弧)的直径垂直于弦。11. 利用半圆上的圆周角是直角。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 9 页 - - - - - - - - - - 精品文档交流2 五、证明线
4、段的和、差、倍、分1. 作两条线段的和,证明与第三条线段相等。 2. 在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。3. 利用一些定理(三角形的中位线、含30 度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。六、证明角的和、差、倍、分1. 作两个角的和,证明与第三角相等。2. 作两个角的差,证明余下部分等于第三角。3. 利用角平分线的定义。4. 三角形的一个外角等于和它不相邻的两个内角的和。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 9 页
5、- - - - - - - - - - 精品文档交流3 第一讲:如何做几何证明题【例题精讲】【专题一】证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质, 其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。【例 1】 已知:如图所示,ABC中,CACBCADDBAECF90 ,。求证: DEDF 【巩固】 如图所示,已知ABC为等边三角形,延长BC 到 D,延长 BA 到 E,并且使AEBD ,连结 CE、DE。求证: ECED 【例
6、2】 已知:如图所示,AB CD,AD BC,AECF。求证: E F FEDCBAACEDFBABDCE精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 9 页 - - - - - - - - - - 精品文档交流4 【专题二】证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。证两直线平行, 可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。证两条直线垂直,可转化为证一个角等于90,或利用两个锐角互余,或等腰三角形“三线合一”来证。【例 3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初中几何证明题思路及做辅助线总结 2022 年初 几何 证明 思路 辅助线 总结
限制150内