湘教版八年级数学下2.7正方形ppt公开课优质教学课件.ppt
《湘教版八年级数学下2.7正方形ppt公开课优质教学课件.ppt》由会员分享,可在线阅读,更多相关《湘教版八年级数学下2.7正方形ppt公开课优质教学课件.ppt(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.7 正方形第2章 四边形导入新课讲授新课当堂练习课堂小结八年级数学下(八年级数学下(XJXJ)教学课件教学课件学习目标1.探索并证明正方形的性质,并了解平行四边形、 矩形、菱形之间的联系和区别;(重点、难点)2探索并证明正方形的判定,并了解平行四边形、 矩形、菱形之间的联系和区别;(重点、难点)3会运用正方形的性质及判定条件进行有关的论证 和计算 . (难点)导入新课导入新课观察下面图形,正方形是我们熟悉的几何图形,在生活中无处不在.情景引入你还能举出其他的例子吗?讲授新课讲授新课 矩 形问题1:矩形怎样变化后就成了正方形呢?你有什么 发现?问题引入正方形的性质一正方形问题2 菱形怎样变化
2、后就成了正方形呢?你有什么 发现?正方形邻边相等矩形正方形 菱 形一个角是直角正方形正方形定义: 有一组邻边相等且有一个角是直角的平行四边形叫正方形.归纳总结已知:如图,四边形ABCD是正方形.求证:正方形ABCD四边相等,四个角都是直角.ABCD证明:四边形ABCD是正方形.A=90, AB=AD (正方形的定义). 又正方形是平行四边形.正方形是矩形(矩形的定义), 正方形是菱形(菱形的定义).A=B =C =D = 90, AB= BC=CD=AD.证一证已知:如图,四边形ABCD是正方形.对角线AC、BD相交于点O.求证:AO=BO=CO=DO,ACBD.ABCDO证明:正方形ABCD
3、是矩形, AO=BO=CO=DO. 正方形ABCD是菱形.ACBD.矩形菱形正方形平行四边形 正方形是特殊的平行四边形,也是特殊的矩形,也是特殊的菱形.所以矩形、菱形有的性质,正方形都有.平行四边形、矩形、菱形、正方形之间关系:性质:1.正方形的四个角都是直角,四条边相等. 2.正方形的对角线相等且互相垂直平分.归纳总结 正方形是中心对称图形,对角线的交点是它的对称中心. 正方形是轴对称图形,两条对角线所在直线,以及过每一组对边中点的直线都是它的对称轴. 由于正方形既是菱形,又是矩形,因此:知识要点ABCD 例1 求证: 正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.ADCBO已
4、知: 如图,四边形ABCD是正方形,对角线AC、BD相 交于点O. 求证: ABO、 BCO、 CDO、 DAO是全等的 等腰直角三角形. 证明: 四边形ABCD是正方形, AC=BD,ACBD,AO=BO=CO=DO. ABO、 BCO、 CDO、 DAO都是等腰直角三角形,并且ABO BCO CDO DAO.典例精析 D A B C E例2 如图,在正方形ABCD中, BEC是等边三角形, 求证: EADEDA15 .证明: BEC是等边三角形,BE=CE=BC,EBC=ECB=60, 四边形ABCD是正方形,AB=BC=CD,ABC=DCB=90,AB=BE=CE=CD, ABE= DC
5、E=30,ABE,DCE是等腰三角形, BAE =CDE =75,EAD= EDA=90-75=15.【变式题1】四边形ABCD是正方形,以正方形ABCD的一边作等边ADE,求BEC的大小解:当等边ADE在正方形ABCD外部时,如图,ABAE,BAE9060150.AEB15.同理可得DEC15.BEC60151530;当等边ADE在正方形ABCD内部时,如图,ABAE,BAE906030,AEB75.同理可得DEC75.BEC360757560150.综上所述,BEC的大小为30或150.易错提醒:因为等边ADE与正方形ABCD有一条公共边,所以边相等本题分两种情况:等边ADE在正方形的外部
6、或在正方形的内部【变式题2】 如图,在正方形ABCD内有一点P满足AP=AB,PB=PC,连接AC、PD(1)求证:APBDPC;解:四边形ABCD是正方形,ABC=DCB=90PB=PC,PBC=PCBABC-PBC=DCB-PCB,即ABP=DCP又AB=DC,PB=PC,APBDPC证明:四边形ABCD是正方形,BAC=DAC=45APBDPC,AP=DP又AP=AB=AD,DP=AP=ADAPD是等边三角形DAP=60PAC=DAP-DAC=15BAP=BAC-PAC=30BAP=2PAC(2)求证:BAP=2PAC 例3 如图,在正方形ABCD中,P为BD上一点,PEBC于E, PF
7、DC于F.试说明:AP=EF.ABCDPEF解: 连接PC,AC.又PEBC , PFDC,四边形ABCD是正方形,FCE=90, BD垂直平分AC,四边形PECF是矩形,PC=EF.AP=PC.AP=EF. 在正方形的条件下证明两条线段相等:通常连接对角线构造垂直平分的模型,利用垂直平分线性质,角平分线性质,等腰三角形等来说明.归纳1.正方形具有而矩形不一定具有的性质是 ( ) A.四个角相等 B.对角线互相垂直平分 C.对角互补 D.对角线相等2.正方形具有而菱形不一定具有的性质( ) A.四条边相等 B.对角线互相垂直平分 C.对角线平分一组对角 D.对角线相等BD练一练2.如图,四边形
8、ABCD是正方形,对角线AC与BD相交于点O,AO2,求正方形的周长与面积解:四边形ABCD是正方形,ACBD,OAOD2.在RtAOD中,由勾股定理,得正方形的周长为4AD , 面积为AD28.222 2,ADAOOD8 2正方形的判定二活动1 准备一张矩形的纸片,按照下图折叠,然后展开,折叠部分得到一个正方形,可量一量验证验证.正方形猜想 满足怎样条件的矩形是正方形?矩形正方形一组邻边相等对角线互相垂直已知:如图,在矩形ABCD中,AC , DB是它的两条对角线, ACDB.求证:四边形ABCD是正方形.证明:四边形ABCD是矩形, AO=CO=BO=DO ,ADC=90. ACDB, A
9、D=AB=BC=CD, 四边形ABCD是正方形.证一证ABCDO对角线互相垂直的矩形是正方形.活动2 把可以活动的菱形框架的一个角变为直角,观察这时菱形框架的形状.量量看是不是正方形.正方形菱形猜想 满足怎样条件的菱形是正方形?正方形一个角是直角对角线相等已知:如图,在菱形ABCD中,AC , DB是它的两条对角线, AC=DB.求证:四边形ABCD是正方形.证明:四边形ABCD是菱形,AB=BC=CD=AD,ACDB.AC=DB, AO=BO=CO=DO,AOD,AOB,COD,BOC是等腰直角三角形,DAB=ABC=BCD=ADC=90, 四边形ABCD是正方形.证一证ABCDO对角线相等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湘教版 八年 级数 2.7 正方形 ppt 公开 优质 教学 课件
限制150内