时间序列入门课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《时间序列入门课件.ppt》由会员分享,可在线阅读,更多相关《时间序列入门课件.ppt(56页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、8.1 时间序列预测的概述时间序列预测的概述l时间序列预测的概念l时间序列预测的原理与依据8.1.1 时间序列预测的概念时间序列预测的概念l时间序列预测法是一种定量分析方法,它是在时间序列变量分析的基础上,运用一定的数学方法建立预测模型,使时间趋势向外延伸,从而预测未来市场的发展变化趋势,确定变量预测值。l时间序列预测法也叫历史延伸法或外推法。l时间序列预测法的基本特点是: 假定事物的过去趋势会延伸到未来; 预测所依据的数据具有不规则性; 撇开了市场发展之间的因果关系。8.1.2 时间序列预测的原理与依据时间序列预测的原理与依据l时间序列是指同一变量按事件发生的先后顺序排列起来的一组观察值或记
2、录值。构成时间序列的要素有两个:其一是时间,其二是与时间相对应的变量水平。实际数据的时间序列能够展示研究对象在一定时期内的发展变化趋势与规律,因而可以从时间序列中找出变量变化的特征、趋势以及发展规律,从而对变量的未来变化进行有效地预测。l时间序列的变动形态一般分为四种:长期趋势变动,季节变动,循环变动,不规则变动。8.2 平均数预测平均数预测l平均数预测是最简单的定量预测方法。平均数预测法的运算过程简单,常在市场的近期、短期预测中使用。l最常用的平均数预测法有: 简单算术平均数法 加权算术平均数法 几何平均数法8.2.1 简单算术平均数法(简单算术平均数法(1)l简单平均数法是用一定观察期内预
3、测目标的时间序列的各期数据的简单平均数作为预测期的预测值的预测方法。l在简单平均数法中,极差越小、方差越小,简单平均数作为预测值的代表性越好。l简单平均数法的预测模型是:nxnxxxxxxniin1321.8.2.1 简单算术平均数法(简单算术平均数法(2)l例观察期123456预测值观察值10501080 1030 1070 1050 106010578.2.2 加权算术平均数法(加权算术平均数法(1)l加权算术平均数法是简单算术平均数法的改进。它根据观察期各个时间序列数据的重要程度,分别对各个数据进行加权,以加权平均数作为下期的预测值。l对于离预测期越近的数据,可以赋予越大的权重。l加权算
4、术平均数法的预测模型是:1.3211332211nniiinnwwwwxwxwxwxwxwxx其中8.2.2 加权算术平均数法(加权算术平均数法(2)l例观察期123456预测值观察值10501080 1030 1070 1050 10601056权重(w)0.10.10.150.150.20.38.2.3 几何平均数法(几何平均数法(1)l几何平均数法是以一定观察期内预测目标的时间序列的几何平均数作为某个未来时期的预测值的预测方法。l几何平均数法一般用于观察期有显著长期变动趋势的预测。l几何平均数法的预测模型是:nnnnnnnaaaaaaaaaaxxxxxxxx01231201321.或 8
5、.2.3 几何平均数法(几何平均数法(2)l例(本例中几何平均增长速度为3.87%。)观察期01234567预测值观察值115012101290136013801415147015001558环比速度-105.2106.6105.4101.5102.5103.9102.08.3 移动平均数预测移动平均数预测l移动平均法根据时间序列逐项移动,依次计算包含一定项数的平均数,形成平均数时间序列,并据此对预测对象进行预测。l移动平均可以消除或减少时间序列数据受偶然性因素干扰而产生的随机变动影响。l移动平均法在短期预测中较准确,长期预测中效果较差。l移动平均法可以分为: 一次移动平均法 二次移动平均法8
6、.3.1 一次移动平均法(一次移动平均法(1)l一次移动平均法适用于具有明显线性趋势的时间序列数据的预测。l一次移动平均法只能用来对下一期进行预测,不能用于长期预测。l必须选择合理的移动跨期,跨期越大对预测的平滑影响也越大,移动平均数滞后于实际数据的偏差也越大。跨期太小则又不能有效消除偶然因素的影响。跨期取值可在320间选取。8.3.1 一次移动平均法(一次移动平均法(2)l一次移动平均数的计算公式如下:nxxxxMxntttttt)1(21)1(1.8.3.1 一次移动平均法(一次移动平均法(3)l例观察年份观察年份时时 序序实际观察值实际观察值Mt(1)(n=4)1991138199224
7、51993335199444941.75199557049.75199664349.25199774652.00199885553.50199994547.252000106552.752001116457.252002124354.258.3.2 二次移动平均法(二次移动平均法(1)l二次移动平均法是对一次移动平均数再次进行移动平均,并在两次移动平均的基础上建立预测模型对预测对象进行预测。l二次移动平均法与一次移动平均法相比,其优点是大大减少了滞后偏差,使预测准确性提高。l二次移动平均只适用于短期预测。而且只用于 的情形。0T8.3.2 二次移动平均法(二次移动平均法(2)l二次移动平均法的
8、预测模型如下:)(122.)2()1()2()1()1()1()1(2)1(1)1()2()1(21)1(ttttttttTtntttttntttttMMnbMMaTbaxnMMMMMnxxxxM其中8.3.2 二次移动平均法(二次移动平均法(3)l例观察年份观察年份时时 序序实际观察值实际观察值Mt(1)(n=4)Mt(2)(n=4)199113819922451993335199444941.75199557049.75199664349.25199774652.0048.19199885553.5051.13199994547.2550.502000106552.7551.3820011
9、16457.2552.692002124354.2552.888.3.2 二次移动平均法(二次移动平均法(4)l根据模型计算得到53.561913.062.55913.062.55913.0)88.5225.54(142)(1262.5588.5225.542211212)2(12)1(1212)2(12)1(1212xTxMMnbMMaT预测2003年所以有8.4 指数平滑法预测指数平滑法预测l指数平滑法来自于移动平均法,是一次移动平均法的延伸。指数平滑法是对时间数据给予加工平滑,从而获得其变化规律与趋势。l根据平滑次数的不同,指数平滑法可以分为: 一次指数平滑法 二次指数平滑法 三次指数平
10、滑法8.4.1 一次指数平滑法(一次指数平滑法(1)l公式: 基本计算公式 一次指数平滑预测模型 当时间序列数据大于50时,初始值S0(1)对St(1)计算结果影响极小,可以设定为x1;当时间序列数据小于50时,初始值S0(1)对St(1)计算结果影响较大,应取前几项的平均值。tttxxx)1(1)1(1221)1(1)1()1(.)1()1()1(tttttttttxxxxSxS8.4.1 一次指数平滑法(一次指数平滑法(2)l例( , S0(1) 取为前三项的平均值)时 序12345678910111213销售量10158201016182022242026St(1)1110.512.81
11、0.415.212.614.316.218.120.122.021.023.55.08.4.2 二次指数平滑法(二次指数平滑法(1)l二次指数平滑的计算公式l预测的数学模型)2(1)1()2()1(tttSSS)(12)2()1()2()1(ttttttttTtSSbSSaTbax其中8.4.2 二次指数平滑法(二次指数平滑法(2)l例:有关数据的计算见下表( )。根据例中数据,有观察年份时 序观察值St(1)St(2)199614041.53442.655199724745.90645.256199835653.98152.236199946562.79660.684200057068.55
12、966.984200167573.71272.366200278280.34278.747TTbaxSSbSSaT38.6937.8138.6)747.78342.80(8 .018 .0)(1937.81747.78342.8022777)2(7)1(77)2(7)1(778 . 08.4.3 三次指数平滑法(三次指数平滑法(1)l当时间序列为非线性增长时,一次指数平滑与二次指数平滑都将失去有效性;此时需要使用三次指数平滑法。l三次指数平滑法建立的模型是抛物线模型。l三次指数平滑的计算公式是:)3(1)2()3()2(1)1()2()1(1)1()1()1()1(tttttttttSSSSS
13、SSxS8.4.3 三次指数平滑法(三次指数平滑法(2)l三次指数平滑法的数学预测模型:)2()1 (2)34()45(2)56()1 (233)3()2()1(22)3()2()1()3()2()1(2tttttttttttttttTtSSScSSSbSSSaTcTbax其中8.5 趋势法预测趋势法预测l分割平均法 直线趋势的分割平均法 抛物线趋势的分割平均法l最小二乘法l三点法 直线趋势预测模型 抛物线趋势预测模型8.5.1 直线趋势的分割平均法(直线趋势的分割平均法(1)l直线趋势的分割平均法的过程首先将时间序列数据分为前后相等的两段(当数据为奇数个时,去掉数列第1项或中间1项),并分别
14、求出两端数据对应观察值与时序的平均值,并以此为坐标;假设两点的坐标分别为 。则选定直线趋势方程为:111212tbxattxxbbtax其中)、(2211,),(txtx8.5.1 直线趋势的分割平均法(直线趋势的分割平均法(2)l例观察年份199419951996199719981999200020012002时 序123456789观察值131516181921232426预测值2003(25.5)8.5.1 直线趋势的分割平均法(直线趋势的分割平均法(3)l计算过程tbtaxtbxattxxbttxx6.15.95.95.26.15.156.1585.25.75.155.235.7498
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 时间 序列 入门 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内