求解线性规划的单纯形法(1)课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《求解线性规划的单纯形法(1)课件.ppt》由会员分享,可在线阅读,更多相关《求解线性规划的单纯形法(1)课件.ppt(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、求解线性规划的单纯形法求解线性规划的单纯形法NO找到相邻的基本可行解最优性检验当前的CPF是最优解吗?开始找到初始的基本可行解单纯形法思路YES停止求解线性规划的单纯形法求解线性规划的单纯形法 Q1:初始基本可行解如何找? 标准型 基本解 Q2:怎样判断最优? 最优性条件 Q3:如何找下一个相邻的基本可行解? 确定移动的方向 确定在何处停下 确定新的基本可行解关键问题求解线性规划的单纯形法求解线性规划的单纯形法例:用单纯形法求解以下线性规划问题求解线性规划的单纯形法求解线性规划的单纯形法首先将模型转化成标准形式求解线性规划的单纯形法求解线性规划的单纯形法Q1:确定初始的基本可行解 选择原点:选
2、择原点: 令决策变量 x1= x2 = 0得:得:X0 = ( 0,0,3,4)T 选择单元阵作为初始基:选择单元阵作为初始基:令非基变量 x1= x2 = 0得:得:X0 = ( 0,0,3,4)T12341 110(,)1201Aa a a a3410(,)01Ba a求解线性规划的单纯形法求解线性规划的单纯形法 非最优:增加非基变量的值,可以使得目标函数Z值增加 基变量在目标函数中的系数为0 非基变量在目标函数中的系数=0Q2:最优性检验检验数求解线性规划的单纯形法求解线性规划的单纯形法 迭代步骤迭代步骤1:确定移动的方向:确定移动的方向 例:例:z = 2x1 + 3x2 选择 x1
3、?Z的增长率=2 选择 x2 ?Z的增长率=3 32,选择x2! 进基变量的选择: 选择非基变量的系数最大的!Q3:如何找下一个相邻的基本可行解确定进基变量确定进基变量检验数的绝对值哦求解线性规划的单纯形法求解线性规划的单纯形法 迭代步骤迭代步骤2:确定在何处停下:确定在何处停下 增加x x2 2 的值, x1 =0 所有变量非负 令x2 =2,从而 x4 =0 离基变量的选择: 最小比值法确定离基变量确定离基变量1233212442 + 3 3 + 2 + =4 42 xxxxxxxxxx32242233 0 314420 =22xxxxxx最小比值法Q3:如何找下一个相邻的基本可行解求解线
4、性规划的单纯形法求解线性规划的单纯形法迭代步骤迭代步骤3:确定新的基本可行解:确定新的基本可行解u原方程 寻找新的基本可行解: 初等数学变换121231242 -3 =0 + 3 + 2 + =4 Zxxxxxxxx初等数学初等数学变换变换初始初始BF解解新的新的BF解解非基变量(Non-basics)x1 =0,x2 =0 x1 =0,x4 =0基变量(Basics)x3 =3,x4 =4x3 =?,x2 =21X*=(0, 2, 1, 0)Z*=6+ x1/2- 3x4/26u新方程Q3:如何找下一个相邻的基本可行解非基变量x1的系数是正数!非最优解!14134124/2 + 3 /2 =
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 求解 线性规划 单纯 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内