平面问题有限单元法课件.ppt
《平面问题有限单元法课件.ppt》由会员分享,可在线阅读,更多相关《平面问题有限单元法课件.ppt(107页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章 用有限单元法解平面问题 例题例题第十一节第十一节 应用变分原理导出有限单元法的基本方程应用变分原理导出有限单元法的基本方程 第十节第十节 计算实例计算实例 第九节第九节 计算成果的整理计算成果的整理 第八节第八节 解题的具体步骤解题的具体步骤 单元的划分单元的划分第七节第七节 结构的整体分析结点平衡方程组结构的整体分析结点平衡方程组习题的提示与答案习题的提示与答案教学参考资料教学参考资料第六章 用有限单元法解平面问题 第六章第六章 用有限单元法解平面问题用有限单元法解平面问题1.有限元法有限元法(Finite Element Method) FEM2. FEM的特点的特点 概述概述(1
2、 1)具有)具有通用性和灵活性通用性和灵活性。 首先将连续体变换为离散化结构,然后再利用首先将连续体变换为离散化结构,然后再利用 分片插值技术与虚功原理或变分方法进行求解。分片插值技术与虚功原理或变分方法进行求解。简称简称FEM,是弹性力学的一种是弹性力学的一种近似解法。近似解法。第六章 用有限单元法解平面问题 简史3. FEM简史简史 (2 2)对同一类问题,可以编制出)对同一类问题,可以编制出通用程序通用程序,应用计算机进行计算。应用计算机进行计算。 (3 3)只要适当加密网格,就可以达到工程)只要适当加密网格,就可以达到工程要求的精度。要求的精度。 1943 1943年柯朗第一次提出了年
3、柯朗第一次提出了FEMFEM的概念。的概念。 FEM FEM是上世纪中期才出现,并得到迅速发展是上世纪中期才出现,并得到迅速发展 和广泛应用的一种数值解法。和广泛应用的一种数值解法。 第六章 用有限单元法解平面问题 1970 1970年后,年后,FEMFEM被引入我国,并很快地得到应被引入我国,并很快地得到应用和发展。用和发展。简史 1956 1956年,特纳等人提出了年,特纳等人提出了FEMFEM。 2020世纪世纪5050年代,平面问题的年代,平面问题的FEMFEM建立,并应用建立,并应用于工程问题。于工程问题。 1960 1960年提出了年提出了FEMFEM的名称。的名称。 20 20世
4、纪世纪6060年代后,年代后,FEMFEM应用于各种力学问题和应用于各种力学问题和非线性问题,并得到迅速发展。非线性问题,并得到迅速发展。第六章 用有限单元法解平面问题 导出方法5.5.本章介绍平面问题的本章介绍平面问题的FEMFEM 4. FEMFEM的主要导出方法的主要导出方法 应用静力方法或变分方法导出。应用静力方法或变分方法导出。仅叙述按位移求解的方法。仅叙述按位移求解的方法。且一般都以平面应力问题来表示。且一般都以平面应力问题来表示。第六章 用有限单元法解平面问题 6-1 基本量和基本方程的基本量和基本方程的 矩阵表示矩阵表示 本章无特别指明,均表示为本章无特别指明,均表示为平面应力
5、平面应力 问题问题的公式。的公式。 采用采用矩阵表示矩阵表示, ,可使公式统一、简洁,可使公式统一、简洁, 且便于编制程序。且便于编制程序。第六章 用有限单元法解平面问题 。Tyxff)(f。Tyxvyxu),(, ),(d。Txyyx)(。Txyyx)(。Tjjiivuvu)(。TjyjxiyixFFFF)(F基本物理量基本物理量: 。Tyxff)(f体力体力: :基本物理量位移函数位移函数:应变应变:应力应力:结点位移列阵结点位移列阵:结点力列阵结点力列阵: :面力面力: :第六章 用有限单元法解平面问题 物理方程物理方程: )(bD )(2100010112cED FEM中应用的方程:中
6、应用的方程: )()(ayvxuyvxuT几何方程几何方程:应用的方程其中其中D D为弹性矩阵,对于平面应力问题是为弹性矩阵,对于平面应力问题是: :第六章 用有限单元法解平面问题 -结点虚位移结点虚位移; ; - -对应的虚应变。对应的虚应变。ATTdxdytF*)( )(*应用的方程图6-1yxoij*,iiyvF*,iixuF*,jjyvF*,jjxuF虚功方程虚功方程:其中其中: : 在在FEMFEM中,用结点的平衡方程代替平衡中,用结点的平衡方程代替平衡微分方程,后者不再列出。微分方程,后者不再列出。第六章 用有限单元法解平面问题 3. 3.整体分析。整体分析。 6-2 6-2 有限
7、单元法的概念有限单元法的概念 FEMFEM的概念,可以简述为:的概念,可以简述为:采用有限自由度采用有限自由度 的离散单元组合体模型去描述实际具有无限自由的离散单元组合体模型去描述实际具有无限自由 度的考察体,是一种在力学模型上进行近似的数度的考察体,是一种在力学模型上进行近似的数 值计算方法。值计算方法。 其理论基础是分片插值技术与变分原理。其理论基础是分片插值技术与变分原理。 FEM的概念1.1.将连续体变换为离散化结构;将连续体变换为离散化结构; 2.2.单元分析;单元分析; FEMFEM的分析过程:的分析过程:第六章 用有限单元法解平面问题 (a) 桁架(b) 深梁(连续体) 结构力学
8、研究的对象结构力学研究的对象是是离散化结构离散化结构。如桁架,。如桁架, 各单元(杆件)之间除结点铰结外,没有其他联各单元(杆件)之间除结点铰结外,没有其他联 系(图(系(图(a a)。)。弹力研究的对象弹力研究的对象,是,是连续体连续体(图(图(b b)) )。结构离散化1. 结构离散化结构离散化将连续体变换为离散化结构将连续体变换为离散化结构第六章 用有限单元法解平面问题 将连续体变换为离散化结构将连续体变换为离散化结构(图(图(c c):): 即将连续体划分为有限多个、有限大小的单元,即将连续体划分为有限多个、有限大小的单元, 并使这些单元仅在一些结点处用绞连结起来,构并使这些单元仅在一
9、些结点处用绞连结起来,构 成所谓成所谓离散化结构离散化结构。结构离散化(c) 深梁(离散化结构)第六章 用有限单元法解平面问题 图(图(c c)与图)与图( ( a a)相比,两者都是离散)相比,两者都是离散 化结构;区别是,桁架的单元是杆件,而化结构;区别是,桁架的单元是杆件,而 图(图(c c)的单元是三角形块体(注意:三角)的单元是三角形块体(注意:三角 形单元内部仍是连续体)。形单元内部仍是连续体)。结构离散化例如例如:将深梁划分为许多三角形单元,这将深梁划分为许多三角形单元,这 些单元仅在角点用些单元仅在角点用铰铰连接起来。连接起来。第六章 用有限单元法解平面问题 2.2.单元分析单
10、元分析 求解方法 每个三角形单元仍然假定为连续的、均匀的、每个三角形单元仍然假定为连续的、均匀的、各向同性的完全弹性体。因单元内各向同性的完全弹性体。因单元内部仍是连续体,部仍是连续体,应按弹性力学方法进行分析。应按弹性力学方法进行分析。 取各结点位移取各结点位移 为基本未为基本未知量知量。然后对每个单元。然后对每个单元, ,分别求出各物理量分别求出各物理量, ,并均并均用用 来表示。来表示。 ), 2 , 1()(ivuTiii), 2 , 1(ii第六章 用有限单元法解平面问题 (1)应用插值公式应用插值公式, 由单元结点位移由单元结点位移 ,求单元的位移函数,求单元的位移函数Tmjie)
11、(。Tyxvyxu),(),(d求解方法这个插值公式称为单元的这个插值公式称为单元的位移模式位移模式,为:,为: 。ed 单元分析的主要内容:单元分析的主要内容: 第六章 用有限单元法解平面问题 (4 4)应用虚功方程,由单元的应力)应用虚功方程,由单元的应力 , 求出求出单元的结点力单元的结点力,表示为,表示为 (3 3)应用物理方程,由单元的应变)应用物理方程,由单元的应变 , 求出求出单元的应力单元的应力,表示为,表示为 (2 2)应用)应用几何方程,由单元的位移函数几何方程,由单元的位移函数d d,求出求出单元的应变单元的应变,表示为,表示为。eS。eB求解方法。emjiekFFFF(
12、第六章 用有限单元法解平面问题 单元对结点的单元对结点的 作用力,与作用力,与 数数 值相同值相同, ,方向相反,方向相反, 作用于结点。作用于结点。 -结点对单元的作用力,作用结点对单元的作用力,作用 于单元,称为结点力,以正标向为正。于单元,称为结点力,以正标向为正。TiyixFF(iFTiyixFF(iF求解方法iFimjxyoiixFiyFjxFjyFmxFmyFiyFixFivmvjviumuju第六章 用有限单元法解平面问题 (5 5)将每一单元中的各种外荷载,按虚)将每一单元中的各种外荷载,按虚功功等效原则移置到结点上,化为等效原则移置到结点上,化为结点荷结点荷载载,表示为表示为
13、 .(eLmLjLieLFFFF求解方法第六章 用有限单元法解平面问题 为已知值为已知值, , 是用结点位移表示的值。是用结点位移表示的值。 通过求解联立方程,得出各结点位移值,从而求通过求解联立方程,得出各结点位移值,从而求出各单元的应变和应力。出各单元的应变和应力。 各单位移置到各单位移置到i i 结点上的结点荷载结点上的结点荷载 其中其中 表示对围绕表示对围绕i i 结点的单元求和;结点的单元求和;iF求解方法LiF3.3.整体分析整体分析,iF,FLi),2, 1(,ieLieiFFe各单元对各单元对i i 结点的结点力结点的结点力 作用于结点作用于结点i i上的力有:上的力有: 第六
14、章 用有限单元法解平面问题 求解方法 3.3.整体分析整体分析 2.2.对单元进行分析对单元进行分析 1.1.将连续体变换为离散化结构将连续体变换为离散化结构 归纳起来,归纳起来,FEMFEM分析的主要步骤分析的主要步骤: (1 1)单元的位移模式)单元的位移模式(2 2)单元的应变列阵)单元的应变列阵(4 4)单元的结点力列阵)单元的结点力列阵(5 5)单元的等效结点荷载列阵)单元的等效结点荷载列阵建立结点平衡方程组,求解各结点的位移。建立结点平衡方程组,求解各结点的位移。(3 3)单元的应力列阵)单元的应力列阵第六章 用有限单元法解平面问题 思考题 1.1.桁架的单元为杆件,而平面体的单元
15、为三角桁架的单元为杆件,而平面体的单元为三角形形块体,在三角形内仍是作为连续体来分析的。块体,在三角形内仍是作为连续体来分析的。前者可用结构力学方法求解,后者只能用弹性前者可用结构力学方法求解,后者只能用弹性力学方法求解,为什么?力学方法求解,为什么?2. 2. 在平面问题中,是否也可以考虑其它的单在平面问题中,是否也可以考虑其它的单 元形状,如四边形单元?元形状,如四边形单元?第六章 用有限单元法解平面问题 应用插值公式,可由应用插值公式,可由 求出位移求出位移 。 首先必须解决:首先必须解决:由由单元的结点位移单元的结点位移 来求出单元的位移函数来求出单元的位移函数 FEMFEM是取结点位
16、移是取结点位移 为基本未知数的。问为基本未知数的。问题是如何求应变、应力。题是如何求应变、应力。 这个插值公式表示了单元中位移的分布形式,这个插值公式表示了单元中位移的分布形式,因此称为因此称为位移模式位移模式。Tmjie(i。Tyxvyxu),(),(de6-3 单元的位移模式与单元的位移模式与 解答的收敛性解答的收敛性 位移模式d第六章 用有限单元法解平面问题 插值公式(插值公式(a a)在结点)在结点 应等于结应等于结点位移值点位移值 。由此可求出。由此可求出 泰勒级数展开式中,低次幂项是最重要的。泰勒级数展开式中,低次幂项是最重要的。所以所以三角形单元的位移模式三角形单元的位移模式,可
17、取为:,可取为: 。yxvyxu654321,),(,mjiyxii),(,mjivuii。61三角形单元(a a)第六章 用有限单元法解平面问题 将式(将式(a a)按未知数)按未知数 归纳为归纳为: : 其中其中 包含包含 。及,iiiivuyx,iivu。mmjjiimmjjiivNvNvNvuNuNuNu,三角形单元61或用矩阵表示为或用矩阵表示为: :(b b)第六章 用有限单元法解平面问题 N 称为形(态)函数矩阵。称为形(态)函数矩阵。eNdmmjjiimjimjivuvuvuNNNNNNvu000000三角形单元(c c)第六章 用有限单元法解平面问题 A A为三角形为三角形
18、的面积(图示坐标系中,的面积(图示坐标系中, 按逆时针编号),有:按逆时针编号),有: 其中其中: :),(,2)(mjiAycxbaNiiii),(11,11,mjixxcyybyxyxamiimiimmjjiijmmji,。mmjjiiyxyxyxA1112三角形单元第六章 用有限单元法解平面问题 三结点三角形单元的位移模式,略去了三结点三角形单元的位移模式,略去了2 2次次以以上的项,因而其上的项,因而其误差量级是误差量级是 且其中只且其中只包含包含了了 的的1 1次项,所以在单元中次项,所以在单元中 的分的分布如图布如图 (a a)所示,)所示, 的分布如图(的分布如图(b b)、()
19、、(c c)所示。)所示。 jimjjmmii);(2xo yx,iNvu和三角形单元(a)(b)(c)ivmvjviumuju1第六章 用有限单元法解平面问题 所以当单元趋于很小时,即所以当单元趋于很小时,即 时,为了使时,为了使FEMFEM之解逼近于真解。则为了之解逼近于真解。则为了保保证证FEMFEM收敛性收敛性, ,位移模式应满足下列条件:位移模式应满足下列条件: FEMFEM中以后的一系列工作,都是以位移中以后的一系列工作,都是以位移 模式为基础的。模式为基础的。 0,yx收敛性条件第六章 用有限单元法解平面问题 因为当单元因为当单元 时,单元中的位移和时,单元中的位移和应变都趋近于
20、基本量应变都趋近于基本量刚体位移和常量刚体位移和常量位移。位移。 (1 1)位移模式必须能反映单元的刚体位移。)位移模式必须能反映单元的刚体位移。 0收敛性条件(2 2)位移模式必须能反映单元的常量应变。)位移模式必须能反映单元的常量应变。第六章 用有限单元法解平面问题 。xxyvyyxu22,22353564353521,00 xvvyuu收敛性条件可见刚体位移项在式(可见刚体位移项在式(a a)中均已反映。)中均已反映。 与刚体位移相比,与刚体位移相比, 将式(将式(a a)写成)写成 第六章 用有限单元法解平面问题 (3 3)位移模式应尽可能反映位移的连续性。位移模式应尽可能反映位移的连
21、续性。 即应尽可能反映原连续体的位移连续即应尽可能反映原连续体的位移连续 性。在三角形单元内部,位移为连续;在两性。在三角形单元内部,位移为连续;在两单元边界单元边界ijij 上,上, 之间均为线性变化,之间均为线性变化,也为连续。也为连续。 对式(对式(a a)求应变,得:)求应变,得:,5362xyyxji 和收敛性条件可见常量应变也已反映。可见常量应变也已反映。 第六章 用有限单元法解平面问题 (1)和()和(2)是必要条件,)是必要条件,而加上(而加上(3)就为充分条件。)就为充分条件。收敛性条件 为了保证为了保证FEM的收敛性:的收敛性:第六章 用有限单元法解平面问题 思考题 1.1
22、.应用泰勒级数公式来选取位移模式,为什么应用泰勒级数公式来选取位移模式,为什么必须从低次项开始选取?必须从低次项开始选取? 2.2.试考虑:将结构力学解法引入到求解连续体的试考虑:将结构力学解法引入到求解连续体的问题时,位移模式的建立是一个关键性工作,问题时,位移模式的建立是一个关键性工作,它使得单元它使得单元( (连续体连续体) )内部的分析工作都有可能内部的分析工作都有可能进行了。进行了。 第六章 用有限单元法解平面问题 6-4 6-4 单元的应变列阵和应力列阵单元的应变列阵和应力列阵 。mmjjiimmjjiivNvNvNvuNuNuNu,),(2/ )(mjiAycxbaNiiii。位
23、移函数其中, 单元中的位移函数单元中的位移函数用位移模式表示为 第六章 用有限单元法解平面问题 应用应用几何方程几何方程,求出,求出单元的应变列阵:单元的应变列阵: ()00010002TiiijmjijmjiijjmmmmuvvuxyxyuvbbbucccvAcbcbcbuveB 。)(a应变第六章 用有限单元法解平面问题 )(),(bmjiBBBB)(),(0021cmjibccbAiiii。iB)(,deeSDBD应变S称为应力转换矩阵应力转换矩阵,写成分块形式为再应用物理方程,求出单元的应力列阵:B 称为应变矩阵应变矩阵,用分块矩阵表示, 第六章 用有限单元法解平面问题 对于线性位移模
24、式,求导后得到的应变和对于线性位移模式,求导后得到的应变和应力,均成为常量,因此,称为应力,均成为常量,因此,称为常应变(应力)常应变(应力)单元单元。应变和应力的误差量级是。应变和应力的误差量级是 其精度比其精度比位移低一阶,且相邻单元的应力是跳跃式的。位移低一阶,且相邻单元的应力是跳跃式的。)(),(emjiSSSS)(),(2121)1 (22fmjibccbcbAEiiiiii。iiDBS),( xo 应力第六章 用有限单元法解平面问题 思考题 1.1.如果在位移模式中取到泰勒级数中的二如果在位移模式中取到泰勒级数中的二次幂项,略去次幂项,略去 高阶小量,试考虑位移、高阶小量,试考虑位
25、移、应变和应力的误差量级。应变和应力的误差量级。3x第六章 用有限单元法解平面问题 6-5 6-5 单元的结点力列阵与劲度矩阵单元的结点力列阵与劲度矩阵 现在来考现在来考虑其中一个单虑其中一个单元:元:模型oyxjmiiixFiyFjxFjyFmxFmyFiyFixF)( 在在FEMFEM中,首先将中,首先将连续体变换为离散化连续体变换为离散化结构的模型。结构的模型。第六章 用有限单元法解平面问题 (2 2)单元与周围的单元在边界上已没有联)单元与周围的单元在边界上已没有联 系,只在结点系,只在结点 互相联系。互相联系。 mji,(1 1)将作用于)将作用于单元上的各种外荷载单元上的各种外荷载
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 问题 有限 单元 课件
限制150内