微积分倒数及求导法则课件.ppt
《微积分倒数及求导法则课件.ppt》由会员分享,可在线阅读,更多相关《微积分倒数及求导法则课件.ppt(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、定义定义2 2::.,)(,)()(lim)(,)(0其中其中简称为导数简称为导数的导函数的导函数称它为称它为上定义了一个函数上定义了一个函数则上式在则上式在与之对应与之对应有有即即上每一点都可导上每一点都可导在区间在区间若若xfIxxfxxfxfIxIxfx .)(,)(dxxdfydxdyxf或或也记作也记作 定义定义3 3:.)()(lim)( ;)()(lim)( )(000000000 xxxfxfxfxxxfxfxfxxfxxxx 右导数右导数处的左导数处的左导数在点在点定理定理1 1:.)(),()(,)(0000存在且相等存在且相等存在存在即即处可导处可导在在xfxfxfxxf
2、 例例1 1、.0)(处的导数处的导数在在求求 xxf.)()2( ; 0 00 1sin)()1(2xxfxxxxxf 例例2 2、)0 , 0( )2( )1 , 0( )1(. 过下列点的切线和法线过下列点的切线和法线求求xey )(:000 xxxfyy 切线方程切线方程)()(1:000 xxxfyy 法线方程法线方程定理定理2 2:.)()(00反之不真反之不真连续连续在在则则可导可导在在若若xxf,xxf连续不一定可导的例子:连续不一定可导的例子:.0)()2(;0)()1(3连续但不可导连续但不可导在在连续但不可导连续但不可导在在 xxxfxxxf如图:如图:xxoyxy oy
3、3xy 练练 习习 题题).()0()(,)(,)0()3( ; 0)()2( ; 1)0()1( :)().()()( ,)0)(. 2).0(, 211)(lim,0)(. 10 xffxfxffxffxfyfxfyxfyxxffxxfxxfx 且且也存在也存在则则存在存在若若具有以下性质具有以下性质试证试证满足关系式满足关系式对于任意实数对于任意实数设函数设函数求求且且的邻域连续的邻域连续在在设设2 2 四则运算求导法则四则运算求导法则定理定理1 1:).0)( )()()()()()()()4();( )()3();()()()( )()()2();()( )()()1(:,)(),(
4、2 xvxvxvxuxvxuxvxuxuCxCuxvxuxvxuxvxuxvxuxvxuxxvxu则则可导可导在点在点若若推论:推论:.)(2();()( )()()1(wuvwvuvwuuvwxvxuxvxu 例例3 3、求导数。、求导数。xxeyxxyxxxyxxyx 1cos)4( sin1cos)3(lncos)2( )1()1(33 3 复合函数求导法则复合函数求导法则定理定理2 2:).()(,)(,)()(,)(xufuyydxdududydxdyxxfyxuuufyxxuxux 或或且且可导可导在点在点则复合函数则复合函数可导可导在对应点在对应点可导可导在点在点若若例例4 4、
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 倒数 求导 法则 课件
限制150内