《第四章压弯构件课件.ppt》由会员分享,可在线阅读,更多相关《第四章压弯构件课件.ppt(45页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、本章主要研究的问题本章主要研究的问题v压弯构件弹性稳定分析;v横向荷载的影响规律;v压弯构件的弹塑性极值点失稳问题;v平面内M与N的相关公式;v压弯构件的荷载-挠度曲线Py-屈服荷载;PE, a-欧拉临界力,小挠度理论;e-一阶弹性分析;d-一阶刚塑性分析;Pp-形成塑性铰时的承载力;b-二阶弹性分析;oAB-二阶弹塑性分析;f,f-侧向约束不足时发生的弹性、弹塑性弯扭失稳;v横向荷载集中荷载均布荷载1)横向集中荷载作用的压弯构件xQPyM2v当0 xl/2时,平衡方程为:即:EIPkEIQxykyQxPyEIy/)2/( 2/ 22其中:v所以方程的通解为:)2/(cossinPQxkxBk
2、xAyv边界条件为:y(0)=0, y(l/2)=0v利用上述条件可得:v则变形曲线的通解为(0 xl/2): 当l/2xl时,与此对称。)2/sec(20klkPQABsin)2/sec(2kxkxklkPQyv当xl/2时,跨中挠度最大,为:22sin2sec2maxklklklkPQyv令ukl/2,并把系数中的k代入,得到:其中:y0=Ql 3/(48EI)跨中集中荷载作用时简支梁的最大挠度; 3(tgu-u)/u3有轴向压力时的最大挠度放大系数。v把tgu用幂级数展开:3033max)tg(3tg348tg2uuuyuuuEIQluuuPQly315/1715/23/753uuuut
3、guv注意到:v则跨中最大位移可以表示为: 为最大挠度放大系数。EPPEIPlEIPlklu/2/222/22EPP/112)横向均布荷载作用的压弯构件ldxyEIU02) (2lldxyPqydxV020) (2v在此采用瑞利里兹法求解。v压杆应变能:v外力势能:qdxyllldxyPqydxdxyEIVU02002) (2) (2v总势能:v设变形曲线为: (仅取一项,其中为跨中最大挠度) 则v则总势能为:v令总势能一阶变分为0, 得跨中最大挠度:)sin(lxy)sin()( )cos(2lxlylxlylPqllEI424223420EEPPPPEIqllPlEIql/11/11384
4、5)2/()2/(/2042343)结果分析v两端铰支受轴心压力的杆件,作用在其上的横向荷载若为对称布置,则此压弯构件的弯曲变形由两部分组成:一部分为不考虑轴心力的弯曲变形;二为放大系数)/1 (1EPPv与上一章讲的初弯曲、初偏心的影响相类似,0相当于初弯曲和初偏心的影响。v弹性分析时,当时,P=PE,即压弯杆件的弹性承载力为PE。 下面给出证明:EEEEPPaPddPPPPP式中,得:代入)(0) 1(0(a) )1 (/112000v本节为简支的压弯构件,其它边界条件时,求解方法类似,结论类似。1)跨中弯矩v横向集中荷载作用时,跨中最大弯矩为:EPPEIPQlQlPQlM/1148443
5、maxmaxEEEEEEEEPPPPMPPPPQlPPPPQlPPlEIPQlPPEIPQlQlM/1/2 . 01/1/18. 014/1182. 014/111214/1148402223max弯矩放大系数横向荷载产生的弯矩v横向均布荷载作用时,跨中最大弯矩为:EEEEPPPPqlPPEIPlqlPPEIqlPqlPlqllqlM/1103. 118/1148518/1138458422222242maxmaxEEEPPMPPPPMM/11/1/03. 0100max弯矩放大系数横向荷载产生的弯矩可见由于轴向力的作用,跨中不但挠度增大,弯矩也有所增大。这里作用效应的增加称为杆件的二阶效应,
6、即P效应。当横向荷载不同时,弯矩的放大系数也有所不同。2)弹性压弯构件平面内弯曲承载力验算v以简支轴压杆,有横向均布荷载作用为例v当达到杆件边缘纤维屈服时:v采用相关方程的形式:v相关方程曲线为:yEfWPPMAP)/1 (1)/1 (yEyWfPPMAfPMN弹性弹塑性1)/1 (EssPPMMPPv钢结构设计规范中压弯构件稳定验算公式就是由上式而来,只不过规范公式同时还考虑了其它边界条件、荷载形式和初始缺陷等因素的影响。1)/1 (EssPPMMPP1)弹塑性压弯构件的工作性能v随着位移的增大,杆件受力最大截面一定会进入弹塑性阶段。v本节所要解决的问题就是求解考虑弹塑性时的P曲线。2)几个
7、基本概念Rddxyy点处伸长量为y dv取出微元dx,有几何关系v即曲率为单位长度上的转角v截面上任一点应变为:dxdRdRdx1ydxydiv中和轴以外为拉,以内为压3)数值积分法(压杆挠曲线法)v具有初弯曲的压弯构件,假设条件最少,可适用于任意情况。v截面上内弯矩:弹塑性阶段弹性阶段内 AjjdAyEIyM拉,压有正负v具体求解过程如下:1.将压杆沿长度分成n段;2.给定压力P;3.假定A端由外荷载产生的转角为a,由AB逐段计算;4.计算第一段中点(1/2)处的曲率1/2,过程如下:1)将截面分成m块小单元;2)假定形心处 和截面曲率2/12/13)求解各小块中心点的应变4)由5)判断截面
8、上的轴力 是否满足? 否则调整 重复3)5)过程。6)判断截面上的弯矩 是否等于Eyriii2/12/1iiyiyyiyyiyiiE - miiiAN12/12/1miiiiyAM12/121)812(2/12112/1eAMPM外21)812(2/12112/1eAMPM外其它外荷载引起由P引起y1/2的由来的由来:(挠曲线用泰勒级数展开,:(挠曲线用泰勒级数展开,x点位移、转角点位移、转角已知,求已知,求x点的位移)点的位移)21211212121010121 ,211211) 1(1)(2)2(212 22)2( 2)2()!1()(!)( 2)( )()(Aiiiiiiiiiiiinn
9、nnyyyyxyyyxynxynxyxyxyxy同时有: 如果1/2点处的内外弯矩相等不能满足,调整 重复3)6)。2/15.计算第一段末的位移、转角:2/1112/1211121AAv对上式求1的一阶导数6.转入对下一段计算,重复第4步2) 第5步,直到最后一段。7.根据最后一段末的边界条件(vB=0)是否满足,否则调整A重复第4步 第7步。8.完成第1步 第7步后,则得到Pv曲线图中的一点。9.给定下一级P(压力),重复第3步第8步,可得Pv曲线。10.若到达某一级荷载时,第7步的调整不能完成,即达到了弯曲失稳的极限承载力。11.为了得到Pv曲线的下降段,可以改用给定A,调整P的办法,完成
10、第4步第7步。(位移加载方式)Pv4)简化计算方法(耶硕克Jezek法)v基本假定: a、材料理想弹塑性。 b、杆件两端简支,构件变形曲线为正弦半波曲线,即: c、只考虑构件中央截面的内外力平衡。zlvvmsinPPzyumPPzyumv计算步骤: a、平衡方程: 其中Mi为内弯矩,与杆件轴向力P和曲率有关: b、由基本假设第二条得到:iqMPuM由横向荷载产生某点的挠度内弯矩),(PfMizlulumsin22 c、由基本假设第三条,平衡方程可以表达为: d、P的最大值可由 得到,即为弯矩作用平面内的稳定承载力。),(mmquPfPuM0mdudP22lEIPexu5)等效弯矩的概念:v考虑
11、受不等端弯矩作用的压弯构件v平衡方程:v通解为:EIMxlEIMMykyxlMMMPyEIyABABAA2 22cossinEIkMxkEIlMMkxBkxAyABAv利用边界条件:v可得通解为:BMMlxyx 0 0时,时,产生同号曲率,弯矩为正;产生异号曲率,弯矩为负;?0 0 cossinsincosmax2222yMMdxdMEIyMEIkMxlEIkMMkxEIkMkxklEIkMklMyABAABAv通过上述办法可以求得各种端弯矩作用下杆件内部截面上的最大弯矩。但这种方法不适合于设计人员使用。故提出等效弯矩的概念。v等效弯矩Meq:将求出的两端弯矩不等的构件中的最大弯矩,等于两端弯
12、矩相等时的最大弯矩,此两端相等的弯矩成为等效弯矩。v等效弯矩系数:两端相等的弯矩与两端不等弯矩中大值之比 1。通过等效弯矩以端弯矩相等的情况代替端弯矩不等的情况,以适用于任何情况。PPM1M2M1M2MmaxM1M2MmaxPPMeqMeqMeqMeqMmax任意端弯矩作用的情况,无法统一求解。端弯矩相等时,求解简单,通过等效弯矩系数,将各种情况统一化。1)基本假定:v钢材理想弹塑性v杆轴为正弦半波变形曲线v平截面假定v有限小变形,(1/4h1/8h)部分发展塑性v用等效初始偏心考虑缺陷的影响2)实用方法介绍v考虑初偏心e0的杆,其相关方程为: 其中:1)/1 (0ExssNNMNeMNNyx
13、sysxExfWMAfNEAlEIN12222NNMMe0v考虑截面塑性发展(1/4h1/8h),用Mp=xMs=xW1xfy代替Ms,(x为塑性发展系数 ),得到:v以下变换的目的是把初始偏心e0代换掉。v当M0时,相当于有初偏心e0的轴压杆,设此时: 把上式代入相关公式得:1)/1 (10ExyxxsNNfWNeMNNyxxAfNNAWNNNNNNexxExxxExxs10)(v把求得的e0回代入相关公式得到: 即:1)1 (1ExsxyxxxNNNNfWMNNyExxxxxfNNWMAN)1 (1v考虑端弯矩不等和有任意横向荷载作用的压弯构件,对十一种截面形式,适当考虑残余应力的影响,按
14、精确理论计算,对上式进行修正,得:yExxxxmxxfNNWMAN)8 . 01 (1mx各种情况的等效弯矩系数。4 . 035. 065. 012MMmx这个公式即为我国钢结构规范中压弯构件稳定计算的相关公式。(1)悬臂构件和在内力分析中未考虑二阶效应的无支)悬臂构件和在内力分析中未考虑二阶效应的无支撑框架和弱支撑框架柱,撑框架和弱支撑框架柱,mx=1.0。(2 2)框架柱和两端支承的构件:无横向荷载作用时,)框架柱和两端支承的构件:无横向荷载作用时, mxmx=0.65+0.35=0.65+0.35M M2 2/ /M M1 1,M M1 1和和M M2 2是构件两端的弯矩,是构件两端的弯
15、矩,| |M M1 1| | |M M2 2| |;当两端弯矩使构件产生同向曲率时取同号,;当两端弯矩使构件产生同向曲率时取同号,使构件产生反向曲率(有反弯点)时取异号。有端弯使构件产生反向曲率(有反弯点)时取异号。有端弯矩和横向荷载同时作用时,使构件产生同向曲率取矩和横向荷载同时作用时,使构件产生同向曲率取 mxmx=1.0=1.0;使构件产生反向曲率取;使构件产生反向曲率取mxmx=0.85=0.85。无端弯矩。无端弯矩但有横向荷载作用时,但有横向荷载作用时,mxmx=1.0=1.0。v等效弯矩系数的取值方法:压弯构件在弯矩作用平面压弯构件在弯矩作用平面外的稳定性外的稳定性 1.双轴对称工
16、字形截面压弯构件的弹性弯扭屈曲临界力双轴对称工字形截面压弯构件的弹性弯扭屈曲临界力绕绕z轴的扭矩平衡方程为轴的扭矩平衡方程为绕绕y轴的轴的弯弯矩平衡方程为矩平衡方程为对于两端铰接的压弯构件,对于两端铰接的压弯构件,中点处的侧移和转角分别中点处的侧移和转角分别为为um和和 m ,变形曲线取为,变形曲线取为u=umsin z/l和和 = msin z/l ,符合下列边界条件:在符合下列边界条件:在z=0和和z=l处,处,u= = u =0。可得到弯扭屈曲的临界力可得到弯扭屈曲的临界力Ncr 的计算方程:的计算方程: 020 uMNiGIEIt 0 MNuuEIy其解为其解为如果构件的端弯矩如果构件
17、的端弯矩M=0,可以得到轴心受压构件的,可以得到轴心受压构件的临界力临界力Ncr=NEy或或Ncr=N 。这里的。这里的NEy是绕截面弱轴是绕截面弱轴弯曲屈曲的临界力,即弯曲屈曲的临界力,即NEy = 2EIy / ly2,N 是绕是绕截面截面纵轴扭转屈曲的临界力,其值和纵轴扭转屈曲的临界力,其值和Nz相同,即相同,即 0202iMNNNNcrcrEy 4212022iMNNNNNEyEycr式中式中ly ,l 分别是构件的侧向弯曲自由长度和扭转分别是构件的侧向弯曲自由长度和扭转自由长度,对于两端铰接的杆自由长度,对于两端铰接的杆ly= l 。 2022ilEIGINt实腹式压弯构件在弯矩作用
18、平面外的实用计算公式实腹式压弯构件在弯矩作用平面外的实用计算公式 受纯弯矩作用的双轴对称截面构件,其弹性弯扭屈曲的临界弯矩受纯弯矩作用的双轴对称截面构件,其弹性弯扭屈曲的临界弯矩以以NEy 和和N 值代入上式后得值代入上式后得N/ NEy 和和M/Mcr 之间的相关关系式之间的相关关系式 如图所示,如图所示,曲线受比值曲线受比值N / /NEy 的影响很大。的影响很大。N / /Ney愈大,压弯构件弯扭屈曲的承载能愈大,压弯构件弯扭屈曲的承载能力愈高。当力愈高。当N =Ney时,相关曲线变为直线式:时,相关曲线变为直线式: N/NEy+ M/Mcr=1 1202222022ilEIGIlEIi
19、GIlEIGIEIlMtyttycr 0NNiMEycr 1122NNMMNNcrEy考虑到不同的受力条件,在公式中引进了非均匀弯矩作用的等效弯矩系数考虑到不同的受力条件,在公式中引进了非均匀弯矩作用的等效弯矩系数 tx 。对于悬臂构件对于悬臂构件 tx=1.0;对于在弯矩作用平面外有支承的构件,根据两个相邻支承点之内杆段的受力条对于在弯矩作用平面外有支承的构件,根据两个相邻支承点之内杆段的受力条 件,如无横向荷载作用时,件,如无横向荷载作用时, tx=0.65+0.35M2/M1,杆段的端弯矩,杆段的端弯矩M1和和M2使它使它 产生同向曲率时取同号,产生反向曲率时取异号,而且产生同向曲率时取
20、同号,产生反向曲率时取异号,而且 M1 M2 ;如果在杆段内只有横向荷载作用,如果在杆段内只有横向荷载作用, tx=1.0;如果在杆段内既有端弯矩又有横向荷载作用,则杆段产生同向曲率时如果在杆段内既有端弯矩又有横向荷载作用,则杆段产生同向曲率时 tx=1.0, 产生反向曲率时产生反向曲率时 tx=0.85。在式中在式中NEy用用 yAfy ,Mcr用用 bW1xfy代入后,压弯构件在弯矩作用平面外的计算公代入后,压弯构件在弯矩作用平面外的计算公式是:式是:式中:式中: b为均匀弯矩作用时构件的整体稳定系数,对于一般工字形截面和为均匀弯矩作用时构件的整体稳定系数,对于一般工字形截面和T形形截面压
21、弯构件均可直接用近似公式计算截面压弯构件均可直接用近似公式计算 b值。对于闭口截面,式左端第二项应值。对于闭口截面,式左端第二项应乘以系数乘以系数 =0.7, b则取为则取为1.0。 1fWMANxbxtxyv格构式压弯构件的设计格构式压弯构件的设计 1.在弯矩作用平面内格构式压弯构件的在弯矩作用平面内格构式压弯构件的 受力性能和计算受力性能和计算格构式压弯构件对虚轴的弯曲失稳采格构式压弯构件对虚轴的弯曲失稳采 用以截面边缘纤维开始屈服作为设计用以截面边缘纤维开始屈服作为设计 准则的计算公式。准则的计算公式。 W1x=Ix /y0 需区别对待:需区别对待:当距当距x轴最远的纤维属于肢件的腹板时,如图轴最远的纤维属于肢件的腹板时,如图c所示截面,所示截面, y0为由为由x轴到压力较大分肢腹板边缘的距离;轴到压力较大分肢腹板边缘的距离;当距当距x轴最远的纤维属于肢件翼缘的外伸部分时,如图轴最远的纤维属于肢件翼缘的外伸部分时,如图d所示所示 截面,截面,y0为由为由x轴到压力较大分肢轴线的距离。轴到压力较大分肢轴线的距离。 x是由构件绕虚轴的换算长细比是由构件绕虚轴的换算长细比 0 x确定的确定的b类截面轴心压杆类截面轴心压杆 稳定系数。稳定系数。2.单肢计算单肢计算 : 单肢单肢1 N1 =Mx /a+N z2 /a 单肢单肢2 N2 =N N1 11fNNWMANExxxxmxx
限制150内