物理化学12章胶体化学课件.pptx
《物理化学12章胶体化学课件.pptx》由会员分享,可在线阅读,更多相关《物理化学12章胶体化学课件.pptx(118页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、上一内容下一内容回主目录O返回2022-4-20u12.0 胶体及其基本特性u12.1 溶胶的制备与净化u12.2 溶胶的光学性质u12.3 溶胶的动力性质u12.4 溶胶的电学性质u12.5 溶胶的稳定与聚沉u*12.6 乳状液、悬浮液、气溶胶u12.7 高分子溶液的渗透压与唐南平衡上一内容下一内容回主目录O返回2022-4-20胶粒的结构分散相与分散介质分散体系分类 (1)按分散相粒子的大小分类 (2)按分散相和介质的聚集状态分类 (3)按胶体溶液的稳定性分类憎液溶胶的特性胶粒的形状上一内容下一内容回主目录O返回2022-4-201 分散相与分散介质 把一种或几种物质分散在另一种物质中就构
2、成分散体系。其中,被分散的物质称为分散相(dispersed phase),另一种物质称为分散介质(dispersing medium)。例如:云,牛奶,珍珠上一内容下一内容回主目录O返回2022-4-202 分散体系分类分类体系通常有三种分类方法:分子分散体系胶体分散体系粗分散体系按分散相粒子的大小分类:按分散相和介质的聚集状态分类:液溶胶固溶胶气溶胶按胶体溶液的稳定性分类: 憎液溶胶亲液溶胶上一内容下一内容回主目录O返回2022-4-20(1)按分散相粒子的大小分类 1.分子分散体系 分散相与分散介质以分子或离子形式彼此混溶,没有界面,是均匀的单相,分子半径大小在10-9 m以下 。通常把
3、这种体系称为真溶液,如CuSO4溶液。2.胶体分散体系 分散相粒子的半径在1 nm100 nm之间的体系。目测是均匀的,但实际是多相不均匀体系。也有的将1 nm 1000 nm之间的粒子归入胶体范畴。3.粗分散体系 当分散相粒子大于1000 nm,目测是混浊不均匀体系,放置后会沉淀或分层,如黄河水。上一内容下一内容回主目录O返回2022-4-20(2)按分散相和介质聚集状态分类1.液溶胶 将液体作为分散介质所形成的溶胶。当分散相为不同状态时,则形成不同的液溶胶:A.液-固溶胶 如油漆,AgI溶胶B.液-液溶胶 如牛奶,石油原油等乳状液C.液-气溶胶 如泡沫上一内容下一内容回主目录O返回2022
4、-4-20(2)按分散相和介质聚集状态分类2.固溶胶 将固体作为分散介质所形成的溶胶。当分散相为不同状态时,则形成不同的固溶胶:A.固-固溶胶 如有色玻璃,不完全互溶的合金B.固-液溶胶 如珍珠,某些宝石C.固-气溶胶 如泡沫塑料,沸石分子筛上一内容下一内容回主目录O返回2022-4-20(2)按分散相和介质聚集状态分类3.气溶胶 将气体作为分散介质所形成的溶胶。当分散相为固体或液体时,形成气-固或气-液溶胶,但没有气-气溶胶,因为不同的气体混合后是单相均一体系,不属于胶体范围.A.气-固溶胶 如烟,含尘的空气B.气-液溶胶 如雾,云上一内容下一内容回主目录O返回2022-4-20(3)按胶体
5、溶液的稳定性分类1.憎液溶胶 半径在1 nm100 nm之间的难溶物固体粒子分散在液体介质中,有很大的相界面,易聚沉,是热力学上的不稳定体系。 一旦将介质蒸发掉,再加入介质就无法再形成溶胶,是 一个不可逆体系,如氢氧化铁溶胶、碘化银溶胶等。 这是胶体分散体系中主要研究的内容。上一内容下一内容回主目录O返回2022-4-20(3)按胶体溶液的稳定性分类2.亲液溶胶 半径落在胶体粒子范围内的大分子溶解在合适的溶剂中,一旦将溶剂蒸发,大分子化合物凝聚,再加入溶剂,又可形成溶胶,亲液溶胶是热力学上稳定、可逆的体系。上一内容下一内容回主目录O返回2022-4-203 憎液溶胶的特性(1)特有的分散程度
6、粒子的大小在10-910-7 m之间,因而扩散较慢,不能透过半透膜,渗透压低但有较强的动力稳定性 和乳光现象。(2)多相不均匀性 具有纳米级的粒子是由许多离子或分子聚结而成,结构复杂,有的保持了该难溶盐的原有晶体结构,而且粒子大小不一,与介质之间有明显的相界面,比表面很大。(3)热力学不稳定性 因为粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。上一内容下一内容回主目录O返回2022-4-20 12.1 溶胶的制备与净化溶胶的制备 (1)分散法 1.研磨法 2.胶溶法 3.超声波分散法 4.电弧法(2)凝聚法 1.化学凝聚法 2.物理
7、凝聚法溶胶的净化 (1)渗析法(2)超过滤法上一内容下一内容回主目录O返回2022-4-201 溶胶的制备 制备溶胶必须使分散相粒子的大小落在胶体分散体系的范围之内,并加入适当的稳定剂。制备方法大致可分为两类: (1)分散法 用机械、化学等方法使固体的粒子变小。 (2)凝聚法 使分子或离子聚结成胶粒上一内容下一内容回主目录O返回2022-4-20用这两种方法直接制出的粒子称为原级粒子。 1 溶胶的制备 视具体制备条件不同,这些粒子又可以聚集成较大的次级粒子。 通常所制备的溶胶中粒子的大小不是均一的,是一个多级分散体系。上一内容下一内容回主目录O返回2022-4-201 溶胶的制备-研磨法1.研
8、磨法 用机械粉碎的方法将固体磨细。 这种方法适用于脆而易碎的物质,对于柔韧性的物质必须先硬化后再粉碎。例如,将废轮胎粉碎,先用液氮处理,硬化后再研磨。 胶体磨的形式很多,其分散能力因构造和转速的不同而不同。上一内容下一内容回主目录O返回2022-4-201 溶胶的制备-研磨法盘式胶体磨上一内容下一内容回主目录O返回2022-4-201 溶胶的制备-研磨法转速约每分钟1万 2万转。 A为空心转轴,与C盘相连,向一个方向旋转,B盘向另一方向旋转。 分散相、分散介质和稳定剂从空心轴A处加入,从C盘与B盘的狭缝中飞出,用两盘之间的应切力将固体粉碎,可得1000 nm左右的粒子。 上一内容下一内容回主目
9、录O返回2022-4-201 溶胶的制备-胶溶法 胶溶法又称解胶法,仅仅是将新鲜的凝聚胶粒重新分散在介质中形成溶胶,并加入适当的稳定剂。 这种稳定剂又称胶溶剂。根据胶核所能吸附的离子而选用合适的电解质作胶溶剂。 这种方法一般用在化学凝聚法制溶胶时,为了将多余的电解质离子去掉,先将胶粒过滤,洗涤,然后尽快分散在含有胶溶剂的介质中,形成溶胶。 上一内容下一内容回主目录O返回2022-4-20例如:1 溶胶的制备-胶溶法AgCl (新鲜沉淀) AgCl(溶胶)AgNOKCl3加或 Fe(OH)3(新鲜沉淀) Fe(OH)3 (溶胶)3FeCl加上一内容下一内容回主目录O返回2022-4-201 溶胶
10、的制备气流粉碎法 3.气流粉碎法 这种方法使用的设备称为喷射磨。 喷射磨有一粉碎室,在粉碎室的边缘上,装有与周边成一定角度的两个高压喷嘴,分别将高压空气及物料以接近或超过音速的速度喷入粉碎室,这两股高速旋转的气流在粉碎室相遇,而形成涡流,由于粒子间的相互碰撞、摩擦及剪切作用而被粉碎。粉碎程度可达1m以下。 由于旋转的离心作用,较大的粒子被抛向周边而继续被粉碎,细小微粒则随气流走向中心,受到挡板的拦截而落入布袋之中。该设备连续操作,效率较高。上一内容下一内容回主目录O返回2022-4-201 溶胶的制备-电弧法 电弧法主要用于制备金、银、铂等金属溶胶。制备过程包括先分散后凝聚两个过程。4.电弧法
11、 将金属做成两个电极,浸在水中,盛水的盘子放在冷浴中。在水中加入少量NaOH 作为稳定剂。 制备时在两电极上施加 100V 左右的直流电,调节电极之间的距离,使之发生电火花,这时表面金属蒸发,是分散过程,接着金属蒸气立即被水冷却而凝聚为胶粒。上一内容下一内容回主目录O返回2022-4-204.电弧法1 溶胶的制备-电弧法上一内容下一内容回主目录O返回2022-4-201 溶胶的制备-凝聚法 1.化学凝聚法 通过各种化学反应使生成物呈过饱和状态,使初生成的难溶物微粒结合成胶粒,在少量稳定剂存在下形成溶胶,这种稳定剂一般是某一过量的反应物。例如:A.复分解反应制硫化砷溶胶 2H3AsO3(稀)+
12、3H2S As2S3(溶胶)+6H2OB.水解反应制氢氧化铁溶胶 FeCl3 (稀)+3H2O (热) Fe(OH)3 (溶胶)+3HCl上一内容下一内容回主目录O返回2022-4-20 C.氧化还原反应制备硫溶胶 2H2S(稀)+ SO2(g) 2H2O +3S (溶胶) Na2S2O3 +2HCl 2NaCl +H2O +SO2 +S (溶胶) E.离子反应制氯化银溶胶 AgNO3(稀)+ KCl(稀) AgCl (溶胶) +KNO3D.还原反应制金溶胶 2HAuCl4(稀)+ 3HCHO +11KOH 2Au(溶胶)+3HCOOK + 8KCl + 8H2O 1 溶胶的制备-凝聚法上一内
13、容下一内容回主目录O返回2022-4-20 2.物理凝聚法 A. 更换溶剂法 利用物质在不同溶剂中溶解度的显著差别来制备溶胶,而且两种溶剂要能完全互溶。 例1.松香易溶于乙醇而难溶于水,将松香的乙醇溶液滴入水中可制备松香的水溶胶 。 例2.将硫的丙酮溶液滴入90左右的热水中,丙酮蒸发后,可得硫的水溶胶。1 溶胶的制备-凝聚法上一内容下一内容回主目录O返回2022-4-20例图:1 溶胶的制备-凝聚法上一内容下一内容回主目录O返回2022-4-20将汞的蒸气通入冷水中就可以得到汞的水溶胶。4金属钠,2苯,5液氮。 B.蒸气骤冷法1 溶胶的制备-凝聚法罗金斯基等人利用下列装置,制备碱金属的苯溶胶。
14、 先将体系抽真空,然后适当加热管2和管4,使钠和苯的蒸气同时在管5 外壁凝聚。除去管5中的液氮,凝聚在外壁的混合蒸气融化,在管3中获得钠的苯溶胶。上一内容下一内容回主目录O返回2022-4-20蒸气骤冷法1 溶胶的制备-凝聚法上一内容下一内容回主目录O返回2022-4-202 溶胶的净化 在制备溶胶的过程中,常生成一些多余的电解质,如制备 Fe(OH)3溶胶时生成的HCl。 少量电解质可以作为溶胶的稳定剂,但是过多的电解质存在会使溶胶不稳定,容易聚沉,所以必须除去。 净化的方法主要有渗析法和超过滤法。 上一内容下一内容回主目录O返回2022-4-20 (1)渗析法简单渗析 将需要净化的溶胶放在
15、羊皮纸或动物膀胱等半透膜制成的容器内,膜外放纯溶剂。2 溶胶的净化 利用浓差因素,多余的电解质离子不断向膜外渗透,经常更换溶剂,就可以净化半透膜容器内的溶胶。 如将装有溶胶的半透膜容器不断旋转,可以加快渗析速度。上一内容下一内容回主目录O返回2022-4-20简单渗析2 溶胶的净化上一内容下一内容回主目录O返回2022-4-20电渗析 为了加快渗析速度,在装有溶胶的半透膜两侧外加一个电场,使多余的电解质离子向相应的电极作定向移动。溶剂水不断自动更换,这样可以提高净化速度。这种方法称为电渗析法。(1)渗析法 2 溶胶的净化上一内容下一内容回主目录O返回2022-4-20电渗析2 溶胶的净化上一内
16、容下一内容回主目录O返回2022-4-20 用半透膜作过滤膜,利用吸滤或加压的方法使胶粒与含有杂质的介质在压差作用下迅速分离。(2)超过滤法2 溶胶的净化 将半透膜上的胶粒迅速用含有稳定剂的介质再次分散。上一内容下一内容回主目录O返回2022-4-201)超过滤装置:2 溶胶的净化上一内容下一内容回主目录O返回2022-4-202)电超过滤:2 溶胶的净化 有时为了加快过滤速度,在半透膜两边安放电极,施以一定电压,使电渗析和超过滤合并使用,这样可以降低超过滤压力。上一内容下一内容回主目录O返回2022-4-20 12.2 溶胶的光学性质1 光散射现象2 光散射的本质3 Tyndall效应4 R
17、ayleigh公式 乳光计原理5 超显微镜上一内容下一内容回主目录O返回2022-4-201 光散射现象 当光束通过分散体系时,一部分自由地通过,一部分被吸收、反射或散射。可见光的波长约在400700 nm之间。 (1)当光束通过粗分散体系,由于粒子大于入射光的波长,主要发生反射,使体系呈现混浊。 (2)当光束通过胶体溶液,由于胶粒直径小于可见光波长,主要发生散射,可以看见乳白色的光柱。 (3)当光束通过分子溶液,由于溶液十分均匀,散射光因相互干涉而完全抵消,看不见散射光。上一内容下一内容回主目录O返回2022-4-202 光散射的本质 光是一种电磁波,照射溶胶时,分子中的电子分布发生位移而产
18、生偶极子,这种偶极子像小天线一样向各个方向发射与入射光频率相同的光,这就是散射光。 分子溶液十分均匀,这种散射光因相互干涉而完全抵消,看不到散射光。 溶胶是多相不均匀体系,在胶粒和介质分子上产生的散射光不能完全抵消,因而能观察到散射现象。上一内容下一内容回主目录O返回2022-4-203 Tyndall效应 Tyndall效应实际上已成为判别溶胶与分子溶液的最简便的方法。 1869年Tyndall发现,若令一束会聚光通过溶胶,从侧面(即与光束垂直的方向)可以看到一个发光的圆锥体,这就是Tyndall效应。其他分散体系也会产生一点散射光,但远不如溶胶显著。 上一内容下一内容回主目录O返回2022
19、-4-204 Rayleigh公式 1871年,Rayleigh研究了大量的光散射现象,对于粒子半径在47nm以下的溶胶,导出了散射光强度I 的计算公式,称为Rayleigh公式:22222200222049() (1 cos)22nnV CIIlnn式中:C 单位体积中粒子数,V 每个粒子的体积 入射光波长, l 观察者与散射中心的距离 n 分散相折射率, n0 分散介质的折射率 I0 入射光强度, 散射角上一内容下一内容回主目录O返回2022-4-204 Rayleigh公式 从Rayleigh公式可得出如下结论:2. 散射光总能量与入射光波长的四次方成反比。入 射光波长愈短,散射愈显著。
20、所以可见光中,蓝、 紫色光散射作用强。3. 分散相与分散介质的折射率相差愈显著,则散射作 用亦愈显著。4. 散射光强度与单位体积中的粒子数成正比。1. 散射光强度与每个粒子体积的平方成正比。上一内容下一内容回主目录O返回2022-4-20乳光计原理 当分散相和分散介质等条件都相同时,Rayleigh公式可改写成:24CVIK3(4/3)Vr323121rrII保持粒子数密度相同,1122ICIC保持粒子大小相同3IKCr代入上式可得: 如果已知一种溶液的散射光强度和粒子半径(或浓度),测定未知溶液的散射光强度,就可以知道其粒径(或浓度),这就是乳光计。上一内容下一内容回主目录O返回2022-4
21、-205 超显微镜的特点及粒子大小的近似测定 普通显微镜分辨率不高,只能分辨出半径在200 nm以上的粒子,所以看不到胶体粒子。 超显微镜分辨率高,可以研究半径为5150 nm的粒子。但是, 超显微镜观察的不是胶粒本身,而是观察胶粒发出的散射光。是目前研究憎液溶胶非常有用的手段之一。 假设胶粒为圆球,半径为r,密度为,质量m由数密度求出,则 343mr1/334mr上一内容下一内容回主目录O返回2022-4-20 从超显微镜可以获得的有用信息:(1) 可以测定球状胶粒的平均半径。(2) 间接推测胶粒的形状和不对称性。例如,球状 粒子不闪光,不对称的粒子在向光面变化时有 闪光现象。(3) 判断粒
22、子分散均匀的程度。粒子大小不同,散 射光的强度也不同。(4) 观察胶粒的布朗运动 、电泳、沉降和凝聚等 现象。5 超显微镜的特点及粒子大小的近似测定上一内容下一内容回主目录O返回2022-4-20超显微镜的类型 1. 狭缝式 照射光从碳弧光源射击,经可调狭缝后,由透镜会聚,从侧面射到盛胶体溶液的样品池中。 超显微镜的目镜看到的是胶粒的散射光。如果溶液中没有胶粒,视野将是一片黑暗。上一内容下一内容回主目录O返回2022-4-20超显微镜的类型 2. 有心形聚光器 这种超显微镜有一个心形腔,上部视野涂黑,强烈的照射光通入心形腔后不能直接射入目镜,而是在腔壁上几经反射,改变方向,最后从侧面会聚在试样
23、上。目镜在黑暗的背景上看到的是胶粒发出的的散射光。上一内容下一内容回主目录O返回2022-4-20 13.3 溶胶的动力性质 Brown 运动 胶粒的扩散 溶胶的渗透压 沉降平衡 高度分布定律上一内容下一内容回主目录O返回2022-4-20Brown运动(Brownian motion) 1827 年植物学家布朗(Brown)用显微镜观察到悬浮在液面上的花粉粉末不断地作不规则的运动。 后来又发现许多其它物质如煤、 化石、金属等的粉末也都有类似的现象。人们称微粒的这种运动为布朗运动。 但在很长的一段时间里,这种现象的本质没有得到阐明。 上一内容下一内容回主目录O返回2022-4-20Brown运
24、动(Brownian motion) 1903年发明了超显微镜,为研究布朗运动提供了物质条件。 用超显微镜可以观察到溶胶粒子不断地作不规则“之”字形的运动,从而能够测出在一定时间内粒子的平均位移。 通过大量观察,得出结论:粒子越小,布朗运动越激烈。其运动激烈的程度不随时间而改变,但随温度的升高而增加。上一内容下一内容回主目录O返回2022-4-20Brown运动的本质 1905年和1906年爱因斯坦(Einstein)和斯莫鲁霍夫斯基(Smoluchowski)分别阐述了Brown运动的本质。认为Brown运动是分散介质分子以不同大小和不同方向的力对胶体粒子不断撞击而产生的,由于受到的力不平衡
25、,所以连续以不同方向、不同速度作不规则运动。随着粒子增大,撞击的次数增多,而作用力抵消的可能性亦大。当半径大于5 m,Brown运动消失。上一内容下一内容回主目录O返回2022-4-20Brown运动的本质 Einstein认为,溶胶粒子的Brown运动与分子运动类似,平均动能为 。并假设粒子是球形的,运用分子运动论的一些基本概念和公式,得到Brown运动的公式为:32kT式中 是在观察时间t内粒子沿x轴方向的平均位移;xr为胶粒的半径;为介质的粘度;L为阿伏加德罗常数。 213rtLRTx 这个公式把粒子的位移与粒子的大小、介质粘度、温度以及观察时间等联系起来。上一内容下一内容回主目录O返回
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 物理化学 12 胶体化学 课件
限制150内