求函数fx的解析式课件.ppt
《求函数fx的解析式课件.ppt》由会员分享,可在线阅读,更多相关《求函数fx的解析式课件.ppt(38页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、b1求函数f(x)的解析式b2求函数解析式的题型有:一、已知f(x)求fg(x):代入法二、已知fg(x)求f(x) :换元法、配凑法;三、换元法与代入法的综合三、换元法与代入法的综合四、已知函数类型,求函数的解析式:待定系数法;五、解方程组法六、赋值法b3二、【换元法换元法】已知已知f(g(x)),求求f(x)的解析式,的解析式,一般的可用换元法,具体为:令一般的可用换元法,具体为:令t=g(x),在求出在求出f(t)可得可得f(x)的解)的解析式。换元后要确定新元析式。换元后要确定新元t的取值的取值范围。范围。 b4例一:已知例一:已知f(x1)x24x1,求,求f(x)的解析式的解析式解
2、:解:设设x1t,则,则xt1,f(t)(t1)24(t1)1,即即f(t)t22t2.所求函数为所求函数为f(x)x22x2.b5b6例一:例一: 已知xxxf2) 1(,求)1(xf解:解:令1xt,则1t2) 1( tx,xxxf2) 1(, 1) 1(2) 1()(22ttttf1)(2xxf) 1( xxxxxf21) 1() 1(22)0( x三、【换元法与代入法的综合换元法与代入法的综合】b7解:令1,1txxt 则 22112121f tf xttt 21f xx223(3)1610yf xxxx 22)1(2xxxf,求f(x)及f(x+3)例二例二:b8练习:的解析式。求、
3、已知的解析式。求、若)(, 1) 1(2)(, 34) 13(12xfxxfxfxxf33) 1(4)(3314)() 13(31, 131xxfttfxftxxt则、解:令1)1()(1)1()()1(1, 1222xxfttfxftxxt则、令b9三、【配凑法(整体代换法)配凑法(整体代换法)】把形如把形如f(g(x)内的内的g(x)当做整体,在解析式的右端整理成只含当做整体,在解析式的右端整理成只含有有g(x)的形式,再把的形式,再把g(x)用用x代替。代替。 一般的利用完全平方公式一般的利用完全平方公式 例二:例二:已知221)1(xxxxf)0(x,求f(x)的解析式解:解:2)1(
4、)1(2xxxxf21xx,2)(2xxf)2( xb10练习:. 0) 1(,4) 1(12xfxxxf解方程、已知2, 203) 1(2) 1() 1(32)(3) 1(2) 1(12) 1() 1(1212222xxxxxfxxxfxxxxxf解得,、解:)2()(),() 1(, 132)(3)(, 1) 1(222gfxgxfxgxxxfxfxxf及求、设的解析式求、已知22)(2) 1(2) 1(2) 1() 1(2222xxxfxxxxxf、解:b11四、【待定系数法待定系数法】已知函数模型(如:一次函数,二次函数已知函数模型(如:一次函数,二次函数,反比例函数等)求反比例函数等
5、)求解析式,首先设出函数解析式,根据已知条件代入求系数解析式,首先设出函数解析式,根据已知条件代入求系数 。解:解:设f(x)=ax+b (a0),则 ff(x)=af(x)+b=a(ax+b)+b= +ab+bxa2342baba3-212baba或3-2)(12)(xxfxxf或例一:例一: 设f(x)是一次函数,且ff(x)=4x+3,求f(x).b12例二:已知反比例函数例二:已知反比例函数f(x)满足满足f(3)6,则函数,则函数f(x)_.b13练习:的解析式求系是一次函数,且满足关、已知函数)(,172) 1(2) 1(3)(1xfxxfxfxf72)(721725) 1( 2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 fx 解析 课件
限制150内