浙大概率论与数理统计样本及抽样分布课件.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《浙大概率论与数理统计样本及抽样分布课件.pptx》由会员分享,可在线阅读,更多相关《浙大概率论与数理统计样本及抽样分布课件.pptx(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第六章、样本及抽样分布第六章、样本及抽样分布第一节:随机样本第一节:随机样本第二节:抽样分布第二节:抽样分布引言引言 随机变量及其所伴随的概率分布全面描述了随机随机变量及其所伴随的概率分布全面描述了随机现象的统计性规律。现象的统计性规律。 概率论的许多问题中,随机变量的概率分布通常概率论的许多问题中,随机变量的概率分布通常是已知的,或者假设是已知的,而一切计算与推理都是已知的,或者假设是已知的,而一切计算与推理都是在这已知是基础上得出来的。是在这已知是基础上得出来的。 但实际中,情况往往并非如此,一个随机现象所但实际中,情况往往并非如此,一个随机现象所服从的分布可能是完全不知道的,或者知道其分
2、布概服从的分布可能是完全不知道的,或者知道其分布概型,但是其中的某些参数是未知的。型,但是其中的某些参数是未知的。例如:例如: 某公路上行驶车辆的速度服从什么某公路上行驶车辆的速度服从什么分布是未知的分布是未知的; 电视机的使用寿命服从什么电视机的使用寿命服从什么分布是未知的分布是未知的; 产品是否合格服从两点分布,但参数产品是否合格服从两点分布,但参数合格率合格率p是是未知的;未知的; 数理统计的任务则是数理统计的任务则是以概率论为基础,根据试验以概率论为基础,根据试验所得到的数据,对研究对象的客观统计规律性做出合所得到的数据,对研究对象的客观统计规律性做出合理的推断。理的推断。 从第本章开
3、始,我们学习数理统计的基础知识。从第本章开始,我们学习数理统计的基础知识。主要有主要有参数估计、假设检验、方差分析、回归分析参数估计、假设检验、方差分析、回归分析等等内容内容.本章主要介绍数理统计的一些基本术语、基本本章主要介绍数理统计的一些基本术语、基本概念、重要的统计量及其分布,它们是后面各章的基概念、重要的统计量及其分布,它们是后面各章的基础。础。学习的基本内容学习的基本内容第一节 随机样本总体和样本总体和样本小结小结一、总体与样本一、总体与样本 一一个统计问题总有它明确的研究对象个统计问题总有它明确的研究对象.1 1、总体与个体总体与个体研究某批灯泡的质量研究某批灯泡的质量 研究对象的
4、全体称为研究对象的全体称为总体总体,总体总体总体中所包含的个体的个数称为总体的总体中所包含的个体的个数称为总体的容量容量.总体中每个成员称为总体中每个成员称为个个体体总体总体有限总体有限总体无限总体无限总体 因此在理论上可以把总体与概率分布等同起来因此在理论上可以把总体与概率分布等同起来. 我们关心的是总体中的个体的某项指标我们关心的是总体中的个体的某项指标( (如人的如人的身高、灯泡的寿命身高、灯泡的寿命, ,汽车的耗油量汽车的耗油量) ) . 由于每个个体的出现是随机的,所以相应的数量指由于每个个体的出现是随机的,所以相应的数量指标的出现也带有随机性标的出现也带有随机性 . 从而从而可以把
5、这种数量指标看可以把这种数量指标看作一个随机变量作一个随机变量X ,因此随机变量,因此随机变量X的分布就是该数的分布就是该数量指标在总体中的分布量指标在总体中的分布. 总体就可以用一个随机变量及其分布来描述总体就可以用一个随机变量及其分布来描述. 例如例如:研究某批灯泡的寿命时,关心的数量指标研究某批灯泡的寿命时,关心的数量指标就是寿命,那么,此总体就可以用随机变量就是寿命,那么,此总体就可以用随机变量X表示,表示,或用其分布函数或用其分布函数F(x)表示表示.某批某批灯泡的寿命灯泡的寿命总体总体 寿命寿命 X 可用一概率可用一概率(指数)分布来刻划(指数)分布来刻划鉴于此,常用随机变量的记号
6、鉴于此,常用随机变量的记号或用其分布函数表示总体或用其分布函数表示总体. 如如说总体说总体X或总体或总体F(x) .体体寿命总体是指数分布总寿命总体是指数分布总 类似地,在研究某地区中学生的营养状况时类似地,在研究某地区中学生的营养状况时 ,若关心的数量指标是身高和体重,我们用若关心的数量指标是身高和体重,我们用X 和和Y 分分别表示身高和体重,那么此总体就可用二维随机变别表示身高和体重,那么此总体就可用二维随机变量量(X,Y)或其联合分布函数或其联合分布函数 F(x,y)来表示来表示. 统计中,总体这个概念的要旨是:统计中,总体这个概念的要旨是:总体就是一个随机变量总体就是一个随机变量(向量
7、向量)或一个概或一个概率分布率分布.2 2、样本样本 总体中抽出若干个体而成的集体总体中抽出若干个体而成的集体,称为称为样本样本。样本中所含个体的个数,称为样本中所含个体的个数,称为样本容量样本容量。从国产轿车中抽从国产轿车中抽5辆辆进行耗油量试验进行耗油量试验样本容量为样本容量为5抽到哪抽到哪5辆是随机的辆是随机的 一旦取定一组样本一旦取定一组样本X1, ,Xn ,得到得到n个具体的数个具体的数 (x1,x2,xn),称为样本的一次观察值,简称,称为样本的一次观察值,简称样本值样本值 .21nXXXnX,观观察察,其其结结果果依依次次记记为为次次重重复复、独独立立在在相相同同的的条条件件下下
8、,进进行行对对总总体体分布.体随机 变随机变量具有的一个随机样一个随机是来自 总来自X,X,这样得到的随机变量Xn21最常用的一种抽样叫作最常用的一种抽样叫作“简单随机抽样简单随机抽样”,其特点:,其特点:1. 代表性代表性: X1,X2,Xn中每一个与所考察的总体有中每一个与所考察的总体有 相同的分布相同的分布.2. 独立性独立性: X1,X2,Xn是相互独立的随机变量是相互独立的随机变量.注注1:所谓样本就是:所谓样本就是n个与总体同分布的随机变量。个与总体同分布的随机变量。注注2定义:定义:.,212121个个独独立立的的观观察察值值的的又又称称为为称称为为样样本本值值,值值简简称称样样
9、本本,它它们们的的观观察察的的简简单单随随机机样样本本,)得得到到的的容容量量为为、或或总总体体(或或总总体体为为从从分分布布函函数数变变量量,则则称称的的、相相互互独独立立的的随随机机是是具具有有同同一一分分布布函函数数的的随随机机变变量量,若若是是具具有有分分布布函函数数设设nXxxxnXFFXXXFXXXFXnnn 由简单随机抽样得到的样本称为由简单随机抽样得到的样本称为简单随机样本简单随机样本,它可以用与总体独立同分布的它可以用与总体独立同分布的n个相互独立的随机个相互独立的随机变量变量X1,X2,Xn表示表示. 简单随机样本是应用中最常见的情形,今后,简单随机样本是应用中最常见的情形
10、,今后,当说到当说到“X1,X2,Xn是取自某总体的样本是取自某总体的样本”时,若时,若不特别说明,就指简单随机样本不特别说明,就指简单随机样本.=F(x1) F(x2) F(xn) 若总体的分布函数为若总体的分布函数为F(x)、概率密度函数为、概率密度函数为f(x),则其简单随机样本的联合分布函数为则其简单随机样本的联合分布函数为),(2*nxxxF其简单随机样本的联合概率密度函数为其简单随机样本的联合概率密度函数为),(2*nxxxf=f(x1) f(x2) f(xn) 事实上我们抽样后得到的资料都是具体的、确事实上我们抽样后得到的资料都是具体的、确定的值定的值. 如我们从某班大学生中抽取
11、如我们从某班大学生中抽取10人测量身高人测量身高,得到得到10个数,它们是样本取到的值而不是样本个数,它们是样本取到的值而不是样本. 我我们只能观察到随机变量取的值而见不到随机变量们只能观察到随机变量取的值而见不到随机变量.3. 总体、样本、样本值的关系总体、样本、样本值的关系总体(理论分布)总体(理论分布) ? 样本样本 样本值样本值 统计是从手中已有的资料统计是从手中已有的资料-样本值,去推断总样本值,去推断总体的情况体的情况-总体分布总体分布F(x)的性质的性质. 总体分布决定了样本取值的概率规律,也就是总体分布决定了样本取值的概率规律,也就是样本取到样本值的规律,因而可以由样本值去推断
12、样本取到样本值的规律,因而可以由样本值去推断总体总体. 样本是联系二者的桥梁样本是联系二者的桥梁 由样本值去推断总体情况,需要对样本值进由样本值去推断总体情况,需要对样本值进行行“加工加工”,这就要构造一些样本的函数,它把,这就要构造一些样本的函数,它把样本中所含的(某一方面)的信息集中起来样本中所含的(某一方面)的信息集中起来. 统计量统计量及其分布及其分布如何对样本进行加工?如何对样本进行加工?第二节 抽样分布统计量与经验分布函数统计量与经验分布函数统计三大抽样分布统计三大抽样分布几个重要的抽样分布定理几个重要的抽样分布定理小结小结1. 统计量统计量 不含任何未知参数的样本的函数称为统计量
13、不含任何未知参数的样本的函数称为统计量. 它是完全由样本决定的量它是完全由样本决定的量.一、统计量与经验分布函数一、统计量与经验分布函数.),(,),(,21212121个个统统计计量量称称是是一一中中不不含含未未知知参参数数,则则的的函函数数,若若是是的的一一个个样样本本,是是来来自自总总体体设设nnnnXXXggXXXXXXgXXXX不是统计量,为什么?不是统计量,为什么?哪些哪些之中哪些是统计量之中哪些是统计量试指出试指出的简单随机样本的简单随机样本是来自是来自数,数,是未知参是未知参,其中,其中服从两点分布服从两点分布、设总体、设总体,)( ,2,max,.,), 1(22155512
14、151XXpXXXXXXXppbXii .2)( ,max,52155121是是未未知知数数)不不是是统统计计量量(因因为为都都是是统统计计量量,但但ppXXXXXXii 例例解解:请注意请注意 :.),X(),(,X)2(21212121的的观观察察值值计计量量也也是是统统则则是是一一个个样样本本的的观观察察值值的的一一个个样样本本是是来来自自总总体体设设nnnnXXfxxxfxxxXXX(1)统计量是一个随机变量。)统计量是一个随机变量。 几个常见统计量几个常见统计量样本平均值样本平均值niiXnX11它反映了它反映了总体均值总体均值的信息的信息样本方差样本方差niiXXnS122)(11
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙大 概率论 数理统计 样本 抽样 分布 课件
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内