【课件】指数函数PPT课件.ppt
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《【课件】指数函数PPT课件.ppt》由会员分享,可在线阅读,更多相关《【课件】指数函数PPT课件.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、引入引入某种细胞分裂时,由1个分裂成2个,2个分裂成4个,1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?分裂次数细胞总数1次2次3次4次x次xy2个2个4个8个162x212223240.84xy *xN学习目标学习目标1.理解指数函数的概念,掌握指数函数的图象与理解指数函数的概念,掌握指数函数的图象与性质;性质;2.归纳总结出比较大小的规律方法;归纳总结出比较大小的规律方法;3.体会由特殊到一般的数学思维方式。体会由特殊到一般的数学思维方式。一、预习案核心引领一、预习案核心引领一、概念一、概念(0,1)xyaaaxR一般地,函数叫做指数函数,其中 是自变量,函数的定义域是
2、 。1.从形式上看指数函数的解析式有何特征?从形式上看指数函数的解析式有何特征? 指数函数是指数函数是形式化形式化的概念,要判断一个函的概念,要判断一个函数是否是指数函数,需抓住三点:数是否是指数函数,需抓住三点: 底数底数a大于零且不等于大于零且不等于1的的常数常数; 化简后化简后幂指数有单一的幂指数有单一的自变量自变量x; 化简后化简后幂的幂的系数为系数为1,且没有其它的项,且没有其它的项=100=x0,a2,f(x)1 1 1x,2 4 6xxxxx (1)当a=1时,f(x)=1为常值函数,无研究必要,(2)当a=0时,f(x)=0无意义,(3)当a0时,f(x)=a如(-2),无意义
3、2.01aa在定义中为什么规定且?针对性针对性 练习:练习: 下列函数是指数函数的是下列函数是指数函数的是 ( )A. y=(-3)x+1 B. y=2+3x C. y=x3 D. y=3-xD底数a对指数函数图象的影响108642-2-4-6-8-10-15-10-551015q x( ) = 13xh x( ) = 12xg x( ) = 3xf x( ) = 2x指数函数底数变指数函数底数变化规律化规律.gsp底数a对指数函数图象的影响法一(观察):在法一(观察):在第一象限第一象限,底数越大图象越,底数越大图象越靠近靠近y正半轴正半轴-底大图高底大图高法二(证明):在法二(证明):在第
4、一象限第一象限,作直线,作直线x=1,从上从上到下,底数由大到小到下,底数由大到小二、图象与性质(特殊到一般;数形结合和分类讨论)二、图象与性质(特殊到一般;数形结合和分类讨论)图图象象性性质质01a1a (1)定义域:R (2)值域:(0,+)(3)过定点(0,1)(4)在R上是减函数(4)在R上是增函数yx(0,1)y=10y=ax(0a1)y1时,时,x0;y0 y1时,时,x0;y1,x0为什么不是为什么不是0,+)?理论依据是什么?理论依据是什么?具体要求:具体要求:1.重点讨论:重点讨论:(1)指数函数指数函数的概念,的概念,指数函数指数函数的图象的图象和性质(求定义域和值域)预习
5、自测和性质(求定义域和值域)预习自测3和例和例1(2)比较两个幂的形式的数大小的方法?例比较两个幂的形式的数大小的方法?例2及拓展及拓展2.先组内讨论,再组间讨论或黑板上讨论先组内讨论,再组间讨论或黑板上讨论;3.错误的题目要改错,找出错因,总结题目的规错误的题目要改错,找出错因,总结题目的规 律、方法和易错点,注重多角度考虑问题。律、方法和易错点,注重多角度考虑问题。二、合作探究二、合作探究明确目标:明确目标:1.1.学有余力同学注重方法的总结学有余力同学注重方法的总结, ,并适当拓展延伸。并适当拓展延伸。2.2.其他同学注重运用基础知识解决问题。其他同学注重运用基础知识解决问题。我展示,我
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 课件 指数函数 PPT
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内