备考2022精品解析:【全国百强校】河北省衡水中学2017届高三9月摸底联考(全国卷)文数试题解析(解析版).pdf
《备考2022精品解析:【全国百强校】河北省衡水中学2017届高三9月摸底联考(全国卷)文数试题解析(解析版).pdf》由会员分享,可在线阅读,更多相关《备考2022精品解析:【全国百强校】河北省衡水中学2017届高三9月摸底联考(全国卷)文数试题解析(解析版).pdf(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第第卷(共卷(共 6060 分)分)一、选择题选择题:本大题共本大题共 12 个小题个小题,每小题每小题 5 分分,共共 60 分分.在每小题给出的四个选项中在每小题给出的四个选项中,只有一项只有一项是符合题目要求的是符合题目要求的.1. 已知集合2|30 ,|13Ax xxBxx,则如图所示阴影部分表示的集合为()A0,1B0,3C1,3D1,3【答案】C考点:集合的运算.【名师点睛】本题考查集合的运算;容易题;有关集合运算的考题,在高考中多以选择题或填空题形式呈现,试题难度不大,多为低档题,对集合运算的考查主要有以下几个命题角度:1.离散型数集间的交、并、补运算;2.连续型数集间的交、并、
2、补运算;3.已知集合的运算结果求集合;4.已知集合的运算结果求参数的值(或求参数的范围).2. 已知向量,2 ,1,1mana,且mn,则实数a的值为()A0B2C2或1D2【答案】B【解析】试题分析:因为mn,所以2(1)20m naaa ,即2a ,故选 B.考点:向量的坐标运算.3. 设复数z满足311 2 (i zi i 为虚数单位) ,则复数z对应的点位于复平面内()A第一象限B第二象限C第三象限D第四象限【答案】A【解析】试题分析:因为311 2i zi ,所以12(12 )(1)311(1)(1)22iiiziiii,即复数z对应的点位于复平面内第一象限,故选 A.考点:1.复数
3、相关的概念;2.复数的运算.4. 已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为()A1B116C14D12【答案】C【解析】考点:古典概型.5. 若直线:4l mxny和圆22:4O xy没有交点,则过点,m n的直线与椭圆22194xy的交点个数为()A0B 至多有一个C1D2来源:Z#xx#k.Com【答案】D【解析】试题分析:因为直线:4l mxny和圆22:4O xy没有交点,所以2242mn,即222mn,所以点( , )m n在圆O内, 即点( , )m n在椭圆22194xy内部, 所以过点( , )m n的直线
4、与椭圆有两个公共点,故选 D.考点:1.直线与圆的位置关系;2.点与圆、点与椭圆的位置关系;3.直线与椭圆的位置关系.6. 在四面体SABC中,,2,2,6ABBC ABBCSASCSB,则该四面体外接球的表面积是()A8 6B6C24D6【答案】D【解析】试题分析:因为,2,ABBC ABBC所以2ACSASB,设AC的中点为D,连接AD,则考点:1.球的切接问题;2.球的表面积与体积.7. 已知 na为等差数列,nS为其前n项和,公差为d,若201717100201717SS,则d的值为()A120B110C10D20【答案】B【解析】试题分析:因为11(1)(1)22nn nnadSna
5、dnn,所以201717112017 117 1()100010020171722SSadadd,所以110d ,故选 B.考点:等差数列的前n项和公式与性质.8. 若函数 sin0f xAxA的部分图象如图所示,则关于 f x的描述中正确的是()A f x在5,12 12上是减函数B f x在5,36上是减函数C f x在5,12 12上是增函数D f x在5,36上是增减函数【答案】C【解析】考点:三角函数的图象与性质.【名师点睛】本题主要考查三角函数的图象与性质,属中档题;三角函数的图象与性质是高考的必考内容,根据函数图象确定解析式首先是由最大值与最小值确定A,再根据周期确定,由最高点的
6、值或最低点的值确定,求出解析式后再研究函数相关性质.9. 某程序框图如图所示,若该程序运行后输出的值是2312,则()A13a B12a C11a D10a 【答案】C【解析】试题分析:该程序框图逆反心理表示的算法功能为11111111111111 121 22 33 4(1)2233411Skkkkk ,由1232112k提,11k ,这时运行程序得11 112k ,所以11a 符合题意,故选 C.考点:程序框图.10.函数 321122132f xaxaxaxa的图象经过四个象限的一个充分必要条件是()A4133a B112a C20a D63516a 【答案】D【解析】来源:学科网考点:
7、1.导数与函数的单调性、极值;2.函数的图象与性质.11. 已知某几何体的三视图如图所示,则该几何体的体积为()A1133B35C1043D1074【答案】C【解析】考点:多面体的表面各与体积.来源:Zxxk.Com12. 已知函数 52log11221xxf xxx,则关于x的方程12fxax,当12a时实根个数为()A5个B6个C7个D8个【答案】B【解析】试题分析:令12txx,则12fxax转化为( )f ta,在直角坐标系内作出函数( )yf x与函数ya的图象,由图象可知,当12a时,( )f ta有三个根123, ,t t t,其中123244,12,23ttt ,由123111
8、2,2,2,xt xtxtxxx得x共有6个不同的解,故选 B.考点:函数与方程.【名师点睛】本题考查函数与方程,属中档题;函数与方程是最近高考的热点内容之一,解 决方法通常是用零点存在定理或数形结合方法求解,如本题就是将方程转化为两个函数图象交点,通过观察图象交点的个数研究方程根的个数的.第第卷(共卷(共 9090 分)分)二、填空题(每题二、填空题(每题 5 分,满分分,满分 20 分,将答案填在答题纸上)分,将答案填在答题纸上)13. 中心在原点,焦点在x轴上的双曲线的一条渐近线经过点2, 1,则它的离心率为【答案】52【解析】考点:双曲线的几何性质;14. 曲线 232lnf xxxx
9、在1x 处的切线方程为【答案】30 xy【解析】试题分析: 21132ln12f , 223fxxx , 12321f ,所以切线方程为21yx即30 xy.考点:导数的几何意义.15. 某大型家电商场为了使每月销售A和B两种产品获得的总利润达到最大,对某月即将出售的A和B进行了相关调査,得出下表:如果该商场根据调查得来的数据,月总利润的最大值为元【答案】960【解析】60 480 9960z .考点:线性规划.【名师点睛】本题考查线性规划,属中题;线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直
10、线的距离,解决此类问题常利用数形结合,准确作出图形是解决问题的关键.16. 如图是网络工作者经常用来解释网络运作的蛇形模型: 数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是【答案】194【解析】考点:1.归纳推理;2.等差数列的前n项和公式.【名师点睛】本题考查的是归纳推理、等差数列的前n项和公式,属中档题;归纳推理是从特殊事例 中归纳出一般性结论的推理,解题关键点在于从有限的特殊事例中寻找其中的规律,要注意从运算的过程中去寻找.注意运算的准确性.三、解答题三、解答题 (本大题共
11、本大题共 6 小题,共小题,共 70 分分.解答应写出文字说明、证明过程或演算步骤解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分 12 分)已知顶点在单位圆上的ABC中,角A、B、C所对的边分别为a、b、c,且222bcabc.(1)求角A的大小;(2)若224bc,求ABC的面积.【答案】(1)60;(2)34.【解析】试题分析:(1) 由222bcabc得222bcabc代入余弦定理即可求出角A;(2)由正弦定理先求出边a,再由余弦定理可求出bc,代入三角形面积公式即可.试题解析: (1)由222bcabc得222bcabc,故2221cos22bcaAbc考点:正弦定理与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国百强校 备考 2022 精品 解析 全国 百强校 河北省 衡水 中学 2017 届高三 摸底 联考 全国卷 试题
链接地址:https://www.taowenge.com/p-11551810.html
限制150内