试验设计与数据处理(3版)全书课件电子教案汇总.pptx
《试验设计与数据处理(3版)全书课件电子教案汇总.pptx》由会员分享,可在线阅读,更多相关《试验设计与数据处理(3版)全书课件电子教案汇总.pptx(339页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、试验设计与数据处理试验设计与数据处理(第三版)(第三版)Experiment Design and Data Processing引引 言言0.1 试验设计与数据处理的发展概况试验设计与数据处理的发展概况n20世纪世纪20年代,英国生物统计学家及数学家费歇年代,英国生物统计学家及数学家费歇(RAFisher)提出了)提出了方差分析方差分析 n20世纪世纪50年代,日本统计学家田口玄一将试验设计中应用年代,日本统计学家田口玄一将试验设计中应用最广的最广的正交设计正交设计表格化表格化 n数学家华罗庚教授也在国内积极倡导和普及的数学家华罗庚教授也在国内积极倡导和普及的“优选法优选法”n我国数学家王元
2、和方开泰于我国数学家王元和方开泰于1978年首先提出了年首先提出了均匀设计均匀设计 0.2 试验设计与数据处理的意义试验设计与数据处理的意义0.2.1 试验设计的目的试验设计的目的:n合理地安排试验合理地安排试验,力求用较少的试验次数获得较好结果力求用较少的试验次数获得较好结果 例:某试验研究了例:某试验研究了3个影响因素:个影响因素: A:A1,A2,A3 B:B1,B2,B3 C:C1,C2,C3 全面试验:全面试验:27次次 正交试验:正交试验:9次次0.2.2 数据处理的目的数据处理的目的n通过误差分析,评判试验数据的可靠性;通过误差分析,评判试验数据的可靠性;n确定影响试验结果的因素
3、主次,抓住主要矛盾,提高试确定影响试验结果的因素主次,抓住主要矛盾,提高试验效率;验效率;n确定试验因素与试验结果之间存在的近似函数关系,并确定试验因素与试验结果之间存在的近似函数关系,并能对试验结果进行预测和优化;能对试验结果进行预测和优化;n试验因素对试验结果的影响规律,为控制试验提供思路;试验因素对试验结果的影响规律,为控制试验提供思路;n确定最优试验方案或配方。确定最优试验方案或配方。第1章 试验数据的误差分析n误差分析(误差分析(error analysis) :对原始数据的可靠性进:对原始数据的可靠性进行客观的评定行客观的评定 n误差(误差(error) :试验中获得的试验值与它的
4、客观真实:试验中获得的试验值与它的客观真实值在数值上的不一致值在数值上的不一致客观真实值客观真实值真值真值试验结果都具有误差,误差自始至终存在于一切科学试验结果都具有误差,误差自始至终存在于一切科学实验过程中实验过程中1.1 真值与平均值真值与平均值 1.1.1 真值(真值(true value)n真值:在某一时刻和某一状态下,某量的真值:在某一时刻和某一状态下,某量的客观值客观值或或实际值实际值 n真值一般是未知的真值一般是未知的n相对的意义上来说,真值又是已知的相对的意义上来说,真值又是已知的平面三角形三内角之和恒为平面三角形三内角之和恒为180国家标准样品的标称值国家标准样品的标称值国际
5、上公认的计量值国际上公认的计量值 高精度仪器所测之值高精度仪器所测之值多次试验值的平均值多次试验值的平均值1.1.2 平均值(平均值(mean) (1)算术平均值()算术平均值(arithmetic mean)121.ninixxxxxnnn 等精度试验值等精度试验值适合:适合:n 试验值服从正态分布试验值服从正态分布(2)加权平均值)加权平均值(weighted mean)n适合不同试验值的精度或可靠性不一致时适合不同试验值的精度或可靠性不一致时1 1221121.Wniinninniiw xw xw xw xxwwwwwi权重权重加权和加权和(3)对数平均值()对数平均值(logarith
6、mic mean)说明:说明: n若数据的分布具有对数特性,则宜使用对数平均值若数据的分布具有对数特性,则宜使用对数平均值n对数平均值对数平均值算术平均值算术平均值n如果如果1/2x1/x22 时,可用算术平均值代替时,可用算术平均值代替121221121221lnlnlnlnLxxxxxxxxxxxxx设两个数:设两个数:x10,x2 0 ,则,则(4)几何平均值()几何平均值(geometric mean)n当一组试验值取对数后所得数据的分布曲线更加对称当一组试验值取对数后所得数据的分布曲线更加对称时,宜采用几何平均值。时,宜采用几何平均值。n几何平均值几何平均值算术平均值算术平均值112
7、12.(.)Gnnnnxx xxx xx设有设有n个正试验值:个正试验值:x1,x2,xn,则,则(5)调和平均值()调和平均值(harmonic mean)n常用在涉及到与一些量的倒数有关的场合常用在涉及到与一些量的倒数有关的场合n调和平均值调和平均值几何平均值几何平均值算术平均值算术平均值1121111.1ninixxxxHnn设有设有n个正试验值:个正试验值:x1,x2,xn,则:,则:Excel在计算平均值中的应用在计算平均值中的应用 1.2 误差的基本概念误差的基本概念1.2.1 绝对误差(绝对误差(absolute error) (1)定义)定义 绝对误差试验值真值绝对误差试验值真
8、值 或或m axtxxxx txxx (2)说明)说明n真值未知,绝对误差也未知真值未知,绝对误差也未知n 可以估计出绝对误差的范围:可以估计出绝对误差的范围:绝对误差限或绝对误差上界绝对误差限或绝对误差上界 或或maxtxxx n绝对误差估算方法:绝对误差估算方法:最小刻度的一半为绝对误差;最小刻度的一半为绝对误差;最小刻度为最大绝对误差;最小刻度为最大绝对误差;根据仪表精度等级计算:根据仪表精度等级计算: 绝对误差绝对误差=量程量程精度等级精度等级%1.2.2 相对误差(相对误差(relative error) (1)定义:)定义:绝对误差相对误差真值tRttxxxExx或或RxEx(2)
9、说明:)说明:n 真值未知,常将真值未知,常将x与试验值或平均值之比作为相对误差:与试验值或平均值之比作为相对误差:RxEx或或n 可以估计出相对误差的大小范围:可以估计出相对误差的大小范围:maxRttxxExx相对误差限或相对误差上界相对误差限或相对误差上界 n 相对误差常常表示为百分数(相对误差常常表示为百分数(%)或千分数()或千分数() (1)tRxxE1.2.3 算术平均误差算术平均误差 (average discrepancy) n定义式:定义式:11nniiiixxdnn n可以反映一组试验数据的误差大小可以反映一组试验数据的误差大小 ixx试验值试验值与算术平均值与算术平均值
10、之间的偏差之间的偏差 id1.2.4 标准误差标准误差 (standard error)n定义式:定义式:21()(n1)niixxSEnn 表示当前样本对总体数据的估计;表示当前样本对总体数据的估计;n表示样本均数与总体均数的相对误差;表示样本均数与总体均数的相对误差;n样本个数样本个数n越大,标准误越小,表明所抽取的样本能够较好越大,标准误越小,表明所抽取的样本能够较好地代表总体样本地代表总体样本(1)定义:)定义:以不可预知的规律变化着的误差,绝对误差时以不可预知的规律变化着的误差,绝对误差时正时负,时大时小正时负,时大时小(2)产生的原因:)产生的原因: 偶然因素偶然因素(3)特点:具
11、有统计规律)特点:具有统计规律n小误差比大误差出现机会多小误差比大误差出现机会多n正、负误差出现的次数近似相等正、负误差出现的次数近似相等n当试验次数足够多时,误差的平均值趋向于零当试验次数足够多时,误差的平均值趋向于零 n可以通过增加试验次数减小随机误差可以通过增加试验次数减小随机误差n随机误差不可完全避免的随机误差不可完全避免的 1.3 试验数据误差的来源及分类试验数据误差的来源及分类1.3.2 系统误差(系统误差(systematic error) (1)定义:)定义: 一定试验条件下,由某个或某些因素按照某一一定试验条件下,由某个或某些因素按照某一确定的规律起作用而形成的误差确定的规律
12、起作用而形成的误差 (2)产生的原因:)产生的原因:多方面多方面(3)特点:)特点:n系统误差大小及其符号在同一试验中是恒定的系统误差大小及其符号在同一试验中是恒定的 n它不能通过多次试验被发现,也不能通过取多次试验值的它不能通过多次试验被发现,也不能通过取多次试验值的平均值而减小平均值而减小n只要对系统误差产生的原因有了充分的认识,才能对它进只要对系统误差产生的原因有了充分的认识,才能对它进行校正,或设法消除。行校正,或设法消除。 1.3.3 过失误差过失误差 (mistake )(1)定义:)定义: 一种显然与事实不符的误差一种显然与事实不符的误差(2)产生的原因:)产生的原因: 实验人员
13、粗心大意造成实验人员粗心大意造成 (3)特点:)特点:n可以完全避免可以完全避免 n没有一定的规律没有一定的规律 1.4.1 精密度(精密度(precision) (1)含义:)含义:n反映了随机误差大小的程度反映了随机误差大小的程度n在一定的试验条件下,多次试验值的彼此符合程度在一定的试验条件下,多次试验值的彼此符合程度 例:甲:例:甲:11.45,11.46,11.45,11.44 乙:乙:11.39,11.45,11.48,11.50(2)说明:)说明:n可以通过增加试验次数而达到提高数据精密度的目的可以通过增加试验次数而达到提高数据精密度的目的 n试验数据的精密度是建立在数据用途基础之
14、上的试验数据的精密度是建立在数据用途基础之上的 n试验过程足够精密,则只需少量几次试验就能满足要求试验过程足够精密,则只需少量几次试验就能满足要求 1.4 试验数据的精准度试验数据的精准度 (3)精密度判断)精密度判断 极差(极差(range)222111()() /nnniiiiiixxxxnnnmaxminRxx标准差(标准差(standard error,SD)222111()() /11nnniiiiiixxxxnsnnR,精密度,精密度标准差标准差,精密度,精密度方差(方差(variance) 标准差的平方:标准差的平方:n样本方差(样本方差( s2 )n总体方差(总体方差(2 )n
15、方差方差,精密度,精密度相对标准偏差(相对标准偏差(relative standard deviation,RSD) 也称也称变异系数变异系数(coefficient of variation,简称,简称CV)n定义式:定义式:()100%sRSDCVx或n适适用于两个或多个数据资料分散程度、变异程度或精密用于两个或多个数据资料分散程度、变异程度或精密程度的比较程度的比较例例1-51.4.2 正确度(正确度(correctness) (1)含义:反映系统误差的大小)含义:反映系统误差的大小(2)正确度与精密度的关系:)正确度与精密度的关系:n 精密度不好,但当试验次数相当多时,有时也会得到精密
16、度不好,但当试验次数相当多时,有时也会得到好的正确度好的正确度 n 精密度高并不意味着正确度也高精密度高并不意味着正确度也高 (a)(b)(c)1.4.3 准确度(准确度(accuracy) (1)含义:)含义:n反映了系统误差和随机误差的综合反映了系统误差和随机误差的综合 n表示了试验结果与真值的一致程度表示了试验结果与真值的一致程度(2)三者关系)三者关系n无系统误差的试验无系统误差的试验 精密度精密度 :ABC正确度:正确度: ABC准确度:准确度: ABCn有系统误差的试验有系统误差的试验 精密度精密度 :A B C 准确度:准确度: A B C ,A B,CExcel在计算误差中的应
17、用在计算误差中的应用 1.5.1 随机误差的检验随机误差的检验 1.5 试验数据误差的统计假设检验试验数据误差的统计假设检验 1.5.1.12检验(检验( 2-test) (1)目的:)目的:对试验数据的随机误差或精密度进行检验。对试验数据的随机误差或精密度进行检验。 在试验数据的总体方差在试验数据的总体方差2已知的情况下,已知的情况下,(2)检验步骤:)检验步骤:若试验数据若试验数据12,nx xx服从正态分布,则服从正态分布,则 计算统计量计算统计量2222(1)ns查临界值查临界值2()df 1dfn2服从自由度为服从自由度为的的分布分布显著性水平显著性水平 一般取一般取0.01或或0.
18、05,表示有显著差异的概率,表示有显著差异的概率n 双侧(尾)检验双侧(尾)检验(two-sided/tailed test) :222122检验检验 若若则判断两方差无显著差异,否则有显著差异则判断两方差无显著差异,否则有显著差异 n单侧(尾)检验单侧(尾)检验(one-sided/tailed test) :左侧(尾)检验左侧(尾)检验 22(1)()df则判断该方差与原总体方差无显著减小,否则有显著减小则判断该方差与原总体方差无显著减小,否则有显著减小 右侧(尾)检验右侧(尾)检验 22()df则判断该方差与原总体方差无显著增大,否则有显著增大则判断该方差与原总体方差无显著增大,否则有显
19、著增大 若若若若(3)Excel在在2检验中的检验中的应用应用 22s(当(当时)时)22s(当(当时)时)1.5.1.2 F检验检验(F-test) (1)目的:)目的: 对两组具有正态分布的试验数据之间的精密度进行比较对两组具有正态分布的试验数据之间的精密度进行比较 (2)检验步骤检验步骤计算统计量计算统计量1(1)(1)(1)12,nxxx2(2)(2)(2)12,nxxx22s21s设有两组试验数据:设有两组试验数据:都服从正态分布,样本方差分别为都服从正态分布,样本方差分别为和和和和,则,则2122sFs111dfn221dfn第一自由度为第一自由度为第二自由度为第二自由度为服从服从
20、F分布,分布, 查临界值查临界值给定的显著水平给定的显著水平111dfn221dfn查查F分布表分布表临界值临界值n 双侧(尾)检验双侧(尾)检验(two-sided/tailed test) :检验检验 若若则判断两方差无显著差异,否则有显著差异则判断两方差无显著差异,否则有显著差异 1212(1)22(,)(,)Fdf dfFFdf dfn单侧(尾)检验单侧(尾)检验(one-sided/tailed test) :左侧(尾)检验左侧(尾)检验 (F1,即,即s12 s22 )则判断该方差则判断该方差1比方差比方差2无显著增大,否则有显著增大无显著增大,否则有显著增大 若若若若(1)12(
21、,)FFdf df12(,)FF df df(3)Excel在在F检验中的应用检验中的应用 1.5.2 系统误差的检验系统误差的检验1.5.2.1 t检验法检验法 (1)平均值与给定值比较)平均值与给定值比较 目的:检验服从正态分布数据的算术平均值是否与给定值目的:检验服从正态分布数据的算术平均值是否与给定值有显著差异有显著差异检验步骤:检验步骤:n计算统计量:计算统计量: 0 xtns服从自由度服从自由度1dfn的的t分布分布(t-distribution) 0给定值(可以是真值、期望值或标准值)给定值(可以是真值、期望值或标准值) n双侧检验双侧检验 :若若2tt则可判断该平均值与给定值无
22、显著差异,否则就有显著差异则可判断该平均值与给定值无显著差异,否则就有显著差异 n 单侧检验单侧检验 左侧检验左侧检验 00()txtt若若, 且且则判断该平均值与给定值无显著减小,否则有显著减小则判断该平均值与给定值无显著减小,否则有显著减小 右侧检验右侧检验 00()txtt若若, 且且则判断该平均值与给定值无显著增大,否则有显著增大则判断该平均值与给定值无显著增大,否则有显著增大 Excel在单样本在单样本t检验中的应用检验中的应用 (2)两个平均值的比较)两个平均值的比较 目的:判断两组服从正态分布数据的算术平均值有无显著目的:判断两组服从正态分布数据的算术平均值有无显著差异差异计算统
23、计量:计算统计量:n两组数据的方差无显著差异时两组数据的方差无显著差异时 121212xxn ntsnn服从自由度服从自由度122dfnn的的t分布分布 s合并标准差:合并标准差:22112212(1)(1)2nsnssnnn两组数据的精密度或方差有显著差异时两组数据的精密度或方差有显著差异时 12221212xxtssnn服从服从t t分布,其自由度为:分布,其自由度为: 22211222222112212()2()()(1)(1)snsndfsnsnnn t检验检验n双侧检验双侧检验 :若若2tt则可判断两平均值无显著差异,否则就有显著差异则可判断两平均值无显著差异,否则就有显著差异 n
24、单侧检验单侧检验 左侧检验左侧检验: 120()txxtt若若且且则判断该平均值则判断该平均值1较平均值较平均值2无显著减小,否则有显著减小无显著减小,否则有显著减小 右侧检验右侧检验: 120()txxtt若若且且则判断该平均值则判断该平均值1较平均值较平均值2无显著增大,否则有显著增大无显著增大,否则有显著增大 Excel在双样本在双样本t检验中的应用检验中的应用 (3)成对数据的比较)成对数据的比较 目的:试验数据是成对出现,判断两种方法、两种仪器目的:试验数据是成对出现,判断两种方法、两种仪器或两分析人员的测定结果之间是否存在系统误差或两分析人员的测定结果之间是否存在系统误差计算统计量
25、:计算统计量: 0dddtns成对测定值之差的算术平均值:成对测定值之差的算术平均值: d0d零或其他指定值零或其他指定值 (1)(2)11nniiiiixxddnnds n对试验值之差值的样本标准差:对试验值之差值的样本标准差: 21()1niidddsn服从自由度为服从自由度为1dfn的的t分布分布 n双侧检验双侧检验 :若若2tt则可判断两平均值无显著差异,否则就有显著差异则可判断两平均值无显著差异,否则就有显著差异 n 单侧检验单侧检验 左侧检验左侧检验: 120()txxtt若若且且则判断该平均值则判断该平均值1较平均值较平均值2无显著减小,否则有显著减小无显著减小,否则有显著减小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 试验 设计 数据处理 全书 课件 电子 教案 汇总
限制150内