2022数字推理题的解题技巧大全.docx
《2022数字推理题的解题技巧大全.docx》由会员分享,可在线阅读,更多相关《2022数字推理题的解题技巧大全.docx(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022数字推理题的解题技巧大全篇一:2022数字推理题的解题技巧大全剖析(5) 2022数字推理题的解题技巧大全剖析(5) 1、102,96,108,84,132,( ) A.36 B.64 C.70 D.72 2、1,32,81,64,25,(),1 A.5 B.6 C.10 D.12 3、-2,-8,0,64,( ) A.-64 B.128 C.156 D.250 4、2,3,13,175,( ) A.30625 B.30651 C.30759 D.30952 5、3,7,16,107,( ) A.1707 B.1704 C.1086 D.1072 1.A【解析】拿到题一看,数列5项呈现
2、一大一小的波浪型,可知运用交替规律,进一步思考就可得出结果是A. 2.B【解析】数字由小到大再到小,立即考虑使用乘方规律。本题就是乘方规律的变化运用,底数分别是1,2,3,4,5,6,对应的指数分别是6,5,4,3,2,1. 3.D【解析】可以看出给出的数字稍加变化都是一些数的乘方,分析一下可知是自然数1,2,3,4立方的各项,对应乘以另一个数列-2,-1,0,1所得,下一个应该是5的立方乘以2,得出答案是D. 4.B【解析】这道题更加明显,四个选项的数字很大,必用乘方规律。可以看出175的平方是30625,但不适用前面项,又知30651比175的平方大26,恰好是前一项13的2倍。推算可知,
3、前项的2倍加上后项的平方等于第三项,因此,答案就是B. 5.A【解析】同样,这道题的四个选项也比较大,但可以看出这些数和一些数的乘方离得较远。再看能不能用乘法呢?从前两项直接是看不出的,但是我们发现16与107的积和1707相近,相差5,往前推发现,前两项的积减去5就等于后一项,因此答案是A. 篇二:考前必看数字推理题的解题技巧大全技巧归纳 写在前面的话 数字推理是行测中很多人眼里的“难题”,面对题目时有人因为惧怕而格外重视,也有人因为不会做而彻底放弃。我自己同样很怕做数字推理题。想过放弃,也想过题海战术,不过最后发现这两种方法都有不切实际的地方。放弃,显然是不可能的。因为不可能保证其他部分都
4、做对,来补回放弃的这些分数。题海,也不科学。行测、申论,再加上法律加试,这么多类型中,数字推理只是一小部分了。把大部分精力放在小部分题目上,只能是弊大于利了。所以我最终选择的是:掌握最基本的,保证基础题目不丢分。放弃有难度的,保证学习和做题有效率。当然,这种方法只适合我这样对数字没什么感觉的人了,如果你学有余力,完全可以精益求精。 常见且易被忽视的数列: 1、质数列:(质数只有1和其本身两个约数)2,3,5,7,11,13,17,19,23,29,31,37,41,43? 例:6 8 11 16 23 ( ) A. 32 B.34 C.36 D.38 1,1,2,3,4,7,() A、4 B、
5、6 C、10 D、12 选B 两两相加组成质数列 17日更新例题 3,7,22,45,() A、58 B、73 C、94 D、116 选D 22-1 32-2 52-3 72-4 (112-5) 2、合数列:4、6、8、9、10、12、14、15、16、18、20? 这2个数列大家很容易忽视,论坛里好多帖子实际上就是因为忘记这2个数列所以才不会做。请大家注意。 众所周知,行测考试做题时间很关键。要做好行测尤其是数列部分是需要技巧的,这没人不同意吧。但是大家往往忽视了基本功。为什么有些人一看到数列题就很 快得出答案呢?我个人觉得是因为他们对数字的敏感。这里面有天赋的成分,但我相信刻苦训练也是可以
6、锻炼出这种敏感的。所以熟练掌握各种基本数列很重要。就拿指数数列来说吧,要求必须熟记110的平方、立方,2、3、4、5的N次方。只有这样,你才能在看到9时立刻想到9=3平方或9=2立方+1。对这几个数字,必须是熟记。5的立方算谁不会算?可是数列题不是叫你算5的立方是多少的,当4、28、16、126这样的数列放在你面前时,忽增忽减看似毫无规律,你还会想到这里有5的立方吗?所以必须熟记。熟到不能再熟。 以下是我看过论坛上的一些题目之后,把大家最爱问的、经常不会做的题目整理在一起,总结的数列常见方法。 分组法 相邻项为一组,各组规律相同。或差为常数、或和为常数。 4,3,1,12,9,3,17,5(A
7、) A12 B13 C14 D15 4.5,3.5,2.8,5.2,4.4,3.6,5.7,( A) A2.3 B3.3 C4.3 D5.3 拆分相加(乘)法 把一个多位数每个位上的数字分别相加或相乘(目前还没见过相减相除的)得到一个新数,再看规律。这类题变型比较多,为方便大家自己总结,所以我写出例题的解答过程。 8757 36 19 ( ) 1 A. 17 B.15 C.12D.10 选D 87157 57136 36119 19110 0111 256 ,269 ,286 ,302 ,() A.254 B.307 C.294 D.316 选B 2+5+6=13 256+13=269 2+6
8、+9=17 269+17=286 2+8+6=16 286+16=302 ?=302+3+2=307 隔项法 奇数项和偶数项分别组成新的数列 0,12,24,14,120,16,( ) A:280 B:32 C:64 D:336 选D 奇数项为0,24,120,? 0=13-1 24=33-3 120=53-5 ?=73-7 三项相加法 这种题其实比较简单,但大家也容易疏忽。三项相加后得到一个新数列,再看规律 2,3,4,9,12,15,22,() 答案:27 2+3+4=9 3+4+9=16 4+9+12=25 ? C=A平方-B及其变型 3,5,4,21,(A),446 A5 B25C30
9、 D 143 变型1:可以是A平方加减一个常数(或有规律的变数) 3,5,16,(240) 变型2:A立方加减常数(或有规律的变数) -1,0,1,2,9,(730) 关于平方、立方还有很多类型,比如自然数列的平方加减常数(或规律变数)、常数的N次方加减常数(或规律变数)?其实都差不多。只要掌握我前面所说的“熟练记忆”,再加上一定练习相信是可以过关的了。 16日23:23更新 下面这道题用的方法,我今天第一次见。提供者,“江歌歌”。大家先看看 0,3,17,95,() 答案:599 1平方-1 1*2平方-1 1*2*3平方-1 2*3*4平方-1 2*3*4*5平方-1 17日 12:03更
10、新 很巧妙数字大小写之间的转换,就当作是轻松一下吧,看过之后会觉得数字推理原来也可以这么有意思 1,10,3,5,() A、11 B、9 C、12 D、4 选D 题目变为:一、十、三、五?分别是1划、2划、3划、4划 分解相乘 把原数分解成2个数字的积,分解之后,变成2个新数列,再看它们之间的规律 2,12,36,80,() 答案:150 2*1 3*4 4*9 5*16 6,15,40,96,() A、216 B、204 C、196 D、176 选B 2*3=6 3*5=15 5*8=40 8*12=96 12*17=204 2,3,5,8,12,17 相差1,2,3,4,5, 补充: 一、
11、有分数的数列,通常的方法是将各数都转化为分数。 0,1/2,8/11,5/6,8/9,() A、31/34 B、33/36 C、35/38 D、37/40 选C 0 = 0/3 1/2= 3/6 8/11 = 8/11 5/6 = 15/18 8/9 = 24/27 分母、分子相差为3 各分母、各分子间差为3、5、7、9 二、基本规律 1,一大一小交替出现,首先考虑隔项数列; 2,由小到大再到小,必与指数有关; 3,注意观察是否平方/立方的变形(或者不同数的平方/立方相加/相减等);要求对以上前提篇的熟练运用 4,跳跃较大则考虑乘积/次方,跳跃较小则考虑差/二重差; 5,尝试把各数间差,及二重
12、差列出,寻找规律; 6,尝试把各数变化成某平方式,看是否存在规律; 数算部分 以下都是最基础的,原本以为不用写上来。可是今天看到还是有人不会。所以加上。 一、立方和公式: a立方+b立方=(a+b)(a平方-ab+b平方) a立方-b立方=(a-b)(a平方+ab+b平方) 二、特殊数列前N项和 1+2+3+4+5+6?+n=n(n+1)/2 2+4+6+8+10+?+2n=n(n+1) 1+3+5+7+?+(2n-1)=n平方 1平方+2平方+3平方+4平方+?+n平方=n(n+1)(2n+1)/6 1立方+2立方+3立方+4立方+?+n立方=n2(n+1)2/4 三、等差数列求和公式: (
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 数字 推理 解题 技巧 大全
限制150内