导数压轴题题型归纳(共35页).doc
《导数压轴题题型归纳(共35页).doc》由会员分享,可在线阅读,更多相关《导数压轴题题型归纳(共35页).doc(35页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 导数压轴题题型归纳1. 高考命题回顾例1已知函数f(x)exln(xm)(新课标卷)(1)设x0是f(x)的极值点,求m,并讨论f(x)的单调性;(2)当m2时,证明f(x)0.例2已知函数f(x)x2axb,g(x)ex(cxd),若曲线yf(x)和曲线yg(x)都过点P(0,2),且在点P处有相同的切线y4x+2(新课标卷)()求a,b,c,d的值()若x2时, ,求k的取值范围。例3已知函数满足(新课标)(1)求的解析式及单调区间;(2)若,求的最大值。例4已知函数,曲线在点处的切线方程为。(新课标)()求、的值;()如果当,且时,求的取值范围。例5设函数(新
2、课标)(1)若,求的单调区间;(2)若当时,求的取值范围例6已知函数f(x)(x3+3x2+ax+b)ex. (1)若ab3,求f(x)的单调区间;(2)若f(x)在(,),(2,)单调增加,在(,2),(,+)单调减少,证明6.2. 在解题中常用的有关结论(1)曲线在处的切线的斜率等于,且切线方程为。(2)若可导函数在 处取得极值,则。反之,不成立。(3)对于可导函数,不等式的解集决定函数的递增(减)区间。(4)函数在区间I上递增(减)的充要条件是:恒成立( 不恒为0).(5)函数(非常量函数)在区间I上不单调等价于在区间I上有极值,则可等价转化为方程在区间I上有实根且为非二重根。(若为二次
3、函数且I=R,则有)。(6) 在区间I上无极值等价于在区间在上是单调函数,进而得到或在I上恒成立(7)若,恒成立,则; 若,恒成立,则(8)若,使得,则;若,使得,则.(9)设与的定义域的交集为D,若D 恒成立,则有.(10)若对、 ,恒成立,则.若对,使得,则. 若对,使得,则.(11)已知在区间上的值域为A,,在区间上值域为B,若对,,使得=成立,则。(12)若三次函数f(x)有三个零点,则方程有两个不等实根,且极大值大于0,极小值小于0.(13)证题中常用的不等式: 1 xx+ 3. 题型归纳例7(构造函数,最值定位)设函数(其中).() 当时,求函数的单调区间;() 当时,求函数在上的
4、最大值.例8(分类讨论,区间划分)已知函数,为函数的导函数. (1)设函数f(x)的图象与x轴交点为A,曲线y=f(x)在A点处的切线方程是,求的值;(2)若函数,求函数的单调区间.例9(切线)设函数.(1)当时,求函数在区间上的最小值;(2)当时,曲线在点处的切线为,与轴交于点求证:.例10(极值比较)已知函数其中当时,求曲线处的切线的斜率;w.w.w.k.s.5.u.c.o.m 当时,求函数的单调区间与极值.例11(零点存在性定理应用)已知函数若函数 (x) = f (x),求函数 (x)的单调区间;设直线l为函数f (x)的图象上一点A(x0,f (x0)处的切线,证明:在区间(1,+)
5、上存在唯一的x0,使得直线l与曲线y=g(x)相切例12(最值问题,两边分求)已知函数.当时,讨论的单调性;设当时,若对任意,存在,使,求实数取值范围.例13(二阶导转换)已知函数若,求的极大值;若在定义域内单调递减,求满足此条件的实数k的取值范围.例14(综合技巧)设函数讨论函数的单调性;若有两个极值点,记过点的直线斜率为,问:是否存在,使得?若存在,求出的值;若不存在,请说明理由.例15(切线交点)已知函数在点处的切线方程为求函数的解析式;若对于区间上任意两个自变量的值都有,求实数的最小值;若过点可作曲线的三条切线,求实数的取值范围例16(根的个数)已知函数,函数是区间-1,1上的减函数.
6、 (I)求的最大值; (II)若上恒成立,求t的取值范围; ()讨论关于x的方程的根的个数例17(综合应用)已知函数求f(x)在0,1上的极值;若对任意成立,求实数a的取值范围;若关于x的方程在0,1上恰有两个不同的实根,求实数b的取值范围.例18(变形构造法)已知函数,a为正常数若,且a,求函数的单调增区间;在中当时,函数的图象上任意不同的两点,线段的中点为,记直线的斜率为,试证明:若,且对任意的,都有,求a的取值范围例19(高次处理证明不等式、取对数技巧)已知函数.(1)若对任意的恒成立,求实数的取值范围;(2)当时,设函数,若,求证例20(绝对值处理)已知函数的图象经过坐标原点,且在处取
7、得极大值(I)求实数的取值范围;(II)若方程恰好有两个不同的根,求的解析式;(III)对于(II)中的函数,对任意,求证:例21(等价变形)已知函数()讨论函数在定义域内的极值点的个数;()若函数在处取得极值,对,恒成立,求实数的取值范围;()当且时,试比较的大小例22(前后问联系法证明不等式)已知,直线与函数的图像都相切,且与函数的图像的切点的横坐标为1。 (I)求直线的方程及m的值; (II)若,求函数的最大值。 (III)当时,求证:例23(整体把握,贯穿全题)已知函数(1)试判断函数的单调性; (2)设,求在上的最大值;(3)试证明:对任意,不等式都成立(其中是自然对数的底数)例24
8、(化简为繁,统一变量)设,函数.()若,求曲线在处的切线方程;()若无零点,求实数的取值范围;()若有两个相异零点,求证: .例25(导数与常见不等式综合)已知函数,其中为正常数()求函数在上的最大值;()设数列满足:,(1)求数列的通项公式; (2)证明:对任意的,;()证明:例26(利用前几问结论证明立体不等式)已知函数f(x)=ex-ax(e为自然对数的底数). (I )求函数f(x)的单调区间;(II)如果对任意,都有不等式f(x) x + x2成立,求实数a的取值范围;(III)设,证明:+0时恒成立,求正整数k的最大值.例36(创新题型)设函数f(x)=ex+sinx,g(x)=a
9、x,F(x)=f(x)g(x).()若x=0是F(x)的极值点,求a的值;()当 a=1时,设P(x1,f(x1), Q(x2, g(x 2)(x10,x20), 且PQ/x轴,求P、Q两点间的最短距离;()若x0时,函数y=F(x)的图象恒在y=F(x)的图象上方,求实数a的取值范围例37(创新题型)已知函数=,.()求函数在区间上的值域;()是否存在实数,对任意给定的,在区间上都存在两个不同的 ,使得成立.若存在,求出的取值范围;若不存在,请说明理由;()给出如下定义:对于函数图象上任意不同的两点,如果对于函数图象上的点(其中总能使得成立,则称函数具备性质“”,试判断函数是不是具备性质“”
10、,并说明理由.例38(图像分析,综合应用) 已知函数,在区间上有最大值4,最小值1,设()求的值;()不等式在上恒成立,求实数的范围;()方程有三个不同的实数解,求实数的范围导数与数列例39(创新型问题)设函数,是的一个极大值点若,求的取值范围;当是给定的实常数,设是的3个极值点,问是否存在实数,可找到,使得的某种排列(其中=)依次成等差数列?若存在,求所有的及相应的;若不存在,说明理由例40(数列求和,导数结合)给定函数(1)试求函数的单调减区间;(2)已知各项均为负的数列满足,求证:;(3)设,为数列的前项和,求证:.导数与曲线新题型例41(形数转换)已知函数, .(1)若, 函数 在其定
11、义域是增函数,求b的取值范围;(2)在(1)的结论下,设函数的最小值;(3)设函数的图象C1与函数的图象C2交于点P、Q,过线段PQ的中点R作轴的垂线分别交C1、C2于点、,问是否存在点R,使C1在处的切线与C2在处的切线平行?若存在,求出R的横坐标;若不存在,请说明理由.例42(全综合应用)已知函数.(1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由;(2)定义,其中,求;(3)在(2)的条件下,令,若不等式对且恒成立,求实数的取值范围.导数与三角函数综合例43(换元替代,消除三角)设函数(),其中()当时,求曲线在点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 压轴 题型 归纳 35
限制150内