平面向量的线性运算及练习(共7页).doc
《平面向量的线性运算及练习(共7页).doc》由会员分享,可在线阅读,更多相关《平面向量的线性运算及练习(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上平面向量的线性运算学习过程知识点一:向量的加法(1)定义已知非零向量,在平面内任取一点A,作,则向量叫做与的和,记作,即求两个向量和的运算,叫做叫向量的加法这种求向量和的方法,称为向量加法的三角形法则说明:运用向量加法的三角形法则时,要特别注意“首尾相接”,即第二个向量要以第一个向量的终点为起点,则由第一个向量的起点指向第二个向量终点 的向量即为和向量.两个向量的和仍然是一个向量,其大小、方向可以由三角形法则确定位移的合成可以看作向量加法三角形法则的物理模型(2)向量加法的平行四边形法则以点O为起点作向量 ,以OA,OB为邻边作,则以O为起点的对角线所在向量就是的和,
2、记作=。说明:三角形法则适合于首尾相接的两向量求和,而平行四边形法则适合于同起点的两向量求和,但两共线向量求和时,则三角形法则较为合适.力的合成可以看作向量加法平行四边形法则的物理模型对于零向量与任一向量(3)特殊位置关系的两向量的和当向量与不共线时,+的方向不同向,且|+|,则+的方向与相同,且|+|=|-|;若|,则+的方向与相同,且|+b|=|-|.(4)向量加法的运算律向量加法的交换律:+=+向量加法的结合律:(+) +=+ (+)知识点二:向量的减法(1)相反向量:与长度相同、方向相反的向量.记作 -。(2)向量和-互为相反向量,即 (-).零向量的相反向量仍是零向量 任一向量与其相
3、反向量的和是零向量,即(-)(-)如果向量互为相反向量,那么-,-,(3)向量减法的定义:向量 加上的 相反向量,叫做 与的差. 即: - = + (- ) 求两个向量差的运算叫做向量的减法.(4)向量减法的几何作法在平面内任取一点O,作,则即可以表示为从向量的终点指向向量的终点的向量,这就是向量减法的几何意义说明:表示.强调:差向量“箭头”指向被减数 用“相反向量”定义法作差向量,- = + (- ), 显然,此法作图较繁,但最后作图可统一.知识点三:向量数乘的定义(1)定义:一般地,我们规定实数与向量的积是一个向量,这种运算叫做向量的数乘,记作,它的长度与方向规定如下:|当时,的方向与的方
4、向相同;当时,的方向与的方向相反当时,(2) 向量数乘的运算律根据实数与向量的积的定义,我们可以验证下面的运算律:设、为实数,那么()();();()知识点四:向量共线的条件向量()与共线,当且仅当有唯一一个实数,使学习结论(1)两个向量的和仍然是向量,它的大小和方向可以由三角形法则和平行四边形法则确定,这两种法则本质上是一致的共线向量加法的几何意义,为共线向量首尾相连接,第一个向量的起点与第二个向量的终点连接所得到的有向线段所表示的向量(2)可以表示为从向量的终点指向向量的终点的向量(3)实数与向量不能相加减,但实数与向量可以相乘向量数乘的几何意义就是几个相等向量相加(4)向量()与共线,当
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 向量 线性 运算 练习
限制150内