2018九年级数学中考专题复习-一次函数综合类问题四大类(共18页).doc
《2018九年级数学中考专题复习-一次函数综合类问题四大类(共18页).doc》由会员分享,可在线阅读,更多相关《2018九年级数学中考专题复习-一次函数综合类问题四大类(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上大类一、一次函数与几何综合 班级:_ 姓名:_【知识点睛】1. 一次函数表达式:y=kx+b(k,b为常数,k0) k是斜率,表示倾斜程度,可以用几何中的坡度(或坡比)来解释坡面的竖直高度与水平宽度的比叫坡度或坡比,如图所示,AM即为竖直高度, uj7BM即为水平宽度,则,b是截距,表示直线与y轴交点的纵坐标2. 设直线l1:y1=k1x+b1,直线l2:y2=k2x+b2,其中k1,k20若k1=k2,且b1b2,则直线l1l2;若k1k2=-1,则直线l1l23. 一次函数与几何综合解题思路从关键点出发,关键点是信息汇聚点,通常是函数图象与几何图形的交点通过点的坐
2、标和横平竖直的线段长的互相转化将函数特征与几何特征结合起来进行研究,最后利用函数特征或几何特征解决问题【精讲精练】1. 如图,点B,C分别在直线y=2x和y=kx上,点A,D是x轴上的两点,已知四边形ABCD是正方形,则k的值为_ 第1题图 第2题图 第3题图2. 如图,直线l1交x轴、y轴于A,B两点,OA=m,OB=n,将AOB绕点O逆时针旋转90得到CODCD所在直线l2与直线l1交于点E,则l1_l2;若直线l1,l2的斜率分别为k1,k2,则k1k2=_3. 如图,直线交x轴、y轴于A,B两点,线段AB的垂直平分线交x轴于点C,交AB于点D,则点C的坐标为_4. 如图,在平面直角坐标
3、系中,函数y=x的图象l是第一、三象限的角平分线探索:若点A的坐标为(3,1),则它关于直线l的对称点A的坐标为_;猜想:若坐标平面内任一点P的坐标为(m,n),则它关于直线l的对称点P的坐标为_;应用:已知两点B(-2,-5),C(-1,-3),试在直线l上确定一点Q,使点Q到B,C两点的距离之和最小,则此时点Q的坐标为_5. 如图,已知直线l:与x轴交于点A,与y轴交于点B,将AOB沿直线l折叠,点O落在点C处,则直线CA的表达式为_ 第5题图 第6题图 第7题图6. 如图,四边形ABCD是一张矩形纸片,E是AB上的一点,且BE:EA=5:3,EC=,把BCE沿折痕EC向上翻折,点B恰好落
4、在AD边上的点F处若以点A为原点,以直线AD为x轴,以直线BA为y轴建立平面直角坐标系,则直线FC的表达式为_7. 如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点(1)a的取值范围是_;(2)若设直线PQ为y=kx+2(k0),则此时k的取值范围是_8. 如图,已知正方形ABCD的顶点A(1,1),B(3,1),直线y=2x+b交边AB于点E,交边CD于点F,则直线y=2x+b在y轴上的截距b的变化范围是_ 第8题图 第9题图9. 如图,已知直线l1:与直线l2:y=-2x+16相交于点C,直
5、线l1,l2分别交x轴于A,B两点,矩形DEFG的顶点D,E分别在l1,l2上,顶点F,G都在x轴上,且点G与点B重合,那么S矩形DEFG:SABC =_ 10. 如图,在平面直角坐标系中,点A,B的坐标分别为A(4,0),B(0,-4),P为y轴上B点下方一点,PB=m(m0),以点P为直角顶点,AP为腰在第四象限内作等腰RtAPM(1)求直线AB的解析式;(2)用含m的代数式表示点M的坐标;(3)若直线MB与x轴交于点Q,求点Q的坐标大类二、一次函数之存在性问题班级:_ 姓名:_【知识点睛】存在性问题:通常是在变化的过程中,根据已知条件,探索某种状态是否存在的题目,主要考查运动的结果.一次
6、函数背景下解决存在性问题的思考方向:1. 把函数信息(坐标或表达式)转化为几何信息;2. 分析特殊状态的形成因素,画出符合题意的图形;3. 结合图形(基本图形和特殊状态下的图形相结合)的几何特征建立等式来解决问题【精讲精练】1. 如图,直线与x轴、y轴分别交于点A,点B,已知点P是第一象限内的点,由点P,O,B组成了一个含60角的直角三角形,则点P的坐标为_2. 如图,直线y=kx-4与x轴、y轴分别交于B,C两点,且.(1)求点B的坐标和k的值(2)若点A是第一象限内直线y=kx-4上的一个动点,则当点A运动到什么位置时,AOB的面积是6?(3)在(2)成立的情况下,x轴上是否存在一点P,使
7、POA是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.3. 如图,在平面直角坐标系中,直角梯形OABC的边OC,OA分别与x轴、y轴重合,ABOC,AOC=90,BCO=45,BC=,点C的坐标为(-9,0)(1)求点B的坐标(2)若直线BD交y轴于点D,且OD=3,求直线BD的表达式(3)若点P是(2)中直线BD上的一个动点,是否存在点P,使以O,D,P为顶点的三角形是等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由4. 如图,直线y=kx+3与x轴、y轴分别交于A,B两点,点C是直线y=kx+3上与A,B不重合的动点过点C的另一直线CD与y轴相交于点D,是否存在点C使B
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 九年级 数学 中考 专题 复习 一次 函数 综合 问题 大类 18
限制150内