应用变式教学提高数学课堂有效性(共6页).doc
《应用变式教学提高数学课堂有效性(共6页).doc》由会员分享,可在线阅读,更多相关《应用变式教学提高数学课堂有效性(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上应用变式教学提高数学课堂有效性东莞 蔡瑞卿【摘 要】在数学教学中,合理的变式能营造一种生动活泼、宽松自由的氛围,能开拓学生的视野,激发学生的思维,有助于学生的探索精神与创新意识。文章探讨了变式教学的含义及作用,并介绍了如何应用变式教学提高数学课堂效率及在应用变式教学时需注意的问题。【关键词】变式教学 提高 有效性 实践 著名心理学家和教育学家布卢姆说:“有效的教学始于准确地知道需要达到的目标是什么。”因此教学目标是课堂教学的灵魂。变式教学符合学生的认知规律,通过对变式教学,使得课堂教学始终围绕着教学目标有层次的推进,为学生提供一个求异、思变的空间,让学生把学到的概念、
2、公式、定理、法则等运用到各种情况中去,使基础知识、基本技能、基本方法和基本思想,在题组中重复出现,又向提高和深化推进,使学生灵活多变的思维品质,数学素养得到有效培养。1 变式与数学变式教学1.1 对变式教学的理解“变式”,中国教育百科全书中说:“变式”-掌握概念的方法之一;是从各个不同的角度抓住事物的主要特殊属性,概括出事物的一般属性的思维方式。那么什么是变式教学?在教学中,变式教学指从一道题目出发,通过改变题目的条件、问题或改变题目设计的情景,重新进行讨论的一种教学方法;也可以是指对例习题进行变通推广,重新认识。1.2 数学变式教学所谓数学变式教学就是将数学中各种知识点有效地结合起来,从最简
3、单的命题入手,不断交换问题的条件和结论,层层推进,从不断的变化中寻找数学的规律和本质。数学变式教学可以充分调动和展示学生的思维过程,让学生积极大胆地参加教学的全过程,通过对数学问题多角度、多层次、多方位的讨论和思考,引导学生从“变”的现象中发现“不变”的本质,从“不变”的本质中探索出“变”的规律,从而培养学生大胆参与、勇于探索、敢于创新的精神。2 变式教学的理论基础2.1 马登变异理论学习就是鉴别,鉴别依赖于对差异的认识,教师应当通过变异维数的扩展引导学生去认识对象的各个方面。变式教学是利用变式的方式进行教学,这一系列的变式就构成了一个变异空间,引导学生积极思考,主动探索,体会变式所要反映的实
4、质意义,这就产生了学习。通过变式教学,在教学过程中指导学生体验和辨别学习对象的关键方面,构建适当的变异空间,这对学生的学习是至关重要的。2.2 建构主义的学习理论建构主义认为知识不是通过教师传授得到,而是学生主动建构获得的。学生以自己原有的知识经验为基础,对外部信息进行主动地选择、加工和处理,建构自己的理解。教师通过变式教学引导学生建构事物的本质属性,成为主动的信息加工者。通过变式教学,提供一定的学习情境,提出能激发学生思考的问题,创设平等自由的学习气氛,开展师生、生生之间的交流与合作学习;通过变式教学,指导学生不断思考,不断对各种信息进行加工和转换,进行归纳总结,发现各种变式的实质联系,培养
5、学生的观察、分析和概括的能力;通过变式教学,一题多解,一法多用,鼓励学生自己变题,在问题解决的过程中使学生对概念、原理形成深刻理解,建立良好的知识结构。2.3 脚手架理论在教育活动中,学生可以凭借由父母、教师、同伴以及他人提供的辅助物完成原本自己无法独立完成的任务。随着学生的能力逐步提升,一旦学生能独立完成任务,这种辅助物“脚手架”就会被逐渐撤离。设置脚手架的目的是为了促进儿童智力的发展、思维能力的发展、创造力及批判精神的发展,最终使儿童成为有创造性思维的开拓者、探索者和学习者,而不仅仅是掌握和储备现成知识。在变式教学的角度看,在学生的最近发展区域中以学生熟悉的问题或背景为起点、以需要解决的问
6、题为指向设置“脚手架”,帮助学生从已有水平向潜在水平跨越,在问题解决的过程中不断积累经验,推动学生智力的发展。3 变式教学是提高数学课堂教学效果的有效途径3.1 巧用变式教学让学生掌握概念的本质数学概念是数学知识的载体。理解和应用数学概念要求对概念内容有较深刻的理性认识,能够解释、举例、变形、推断、否定并能利用概念解决相应问题。而变式兼具解释、举例、变形、推断等多种功能。利用变式教学能有效地让学生掌握概念的本质。比如在学习奇偶函数的定义后,可以如下变式,加以理解。例1:对于奇函数定义式:,有:变式1: ;变式2:。对于偶函数变式:,也有:变式1:变式2:可以利用上述变式判断某些函数,判断函数例
7、如的奇偶性十分方便。又如周期性概念,概念本身并不难理解,判断正弦函数、余弦函数、正切函数的周期性也比较简单,但如果进一步分析:具备哪些条件的函数具有周期性,它与函数的奇偶性、对称性又有何关系?这就让很多学生都会感到棘手。但若在讲函数的周期性时能逐层递进地利用变式条件,则这些难题就能迎刃而解,并且使学生进一步加深概念的理解和提高应用概念解题的能力。例2:若是定义在上的函数并且满足下列条件之一,则是否为周期函数:;是偶函数且;是奇函数且图象关于点对称;是奇函数且图象关于直线对称;是偶函数且图象关于直线对称;是偶函数且图象关于直线对称;偶函数对任意实数,总有;函数对任意正实数,总有。3.2 善用变式
8、教学培养学生的思维在学习定理、公式的教学过程中,运用变式教学可以明确定理、公式的条件,结论和适用范围,注意事项等关键之处,让学生深入理解定理、公式的本质,从而培养学生严密的逻辑推理能力和正确演算能力。例如针对均值不等式的应用条件,讲述均值不等式定理时,我们可以设置如下题组:例3:1.求函数的最值,并求此时的值。2. 求函数的最值,并求此时的值。3. 求函数的最值,并求此时的值。4. 已知,求函数的最值,并求此时的值。5. 已知,求函数的最值,并求此时的值。6. 已知正实数满足条件,求的取值范围。7. 已知正实数满足条件,求的取值范围。以上设置的题组充分体现了均值不等式“一正二定三相等”的条件,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 应用 教学 提高 数学 课堂 有效性
限制150内