平面关节型机械手结构设计(共32页).doc





《平面关节型机械手结构设计(共32页).doc》由会员分享,可在线阅读,更多相关《平面关节型机械手结构设计(共32页).doc(32页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上平面关节型机械手结构设计摘要 机械手是在自动化生产过程中使用的一种具有抓取和移动工件功能的自动化装置,目前平面关节型机械手被广泛应用于工业领域中。平面关节型机械手采用两个回转关节和一个移动关节;两个回转关节控制前后左右运动,而移动关节则实现上下运动。文章中介绍了平面关节型机械手的设计理论与方法,在力学计算的基础上进行结构分析,详尽的讨论了平面关节型机械手的手部、腕部、手臂以及机身等主要部件的结构设计。 关键词: 机械手 平面关节型 结构设计 Plane joint type manipulator structure designAbstract Manipulato
2、r is a sort of automation device which has the function of grasp and transfer workpieces during the automated production. Today hydraulic manipulator is widely used in industry field. Planar articulated robot with two rotary joints and a prismatic joint; two rotary joints around, movement control, a
3、nd move up and down movement joint is achieved.This article system elaboration industry manipulators design theory and method. Mechanical calculations on the basis of the structural analysis.The comprehensive exhaustive discussion has Planar articulated manipulators hand, the wrist, the arm ,the fus
4、elage and so on ,which the major structural design computation.Key words: manipulator; Plane joint type; structural design目 录 01 绪论机械手是一种模仿人手部分动作,按照预先设定的程序,轨迹或其他要求,实现抓取、搬运工件或操作工具的自动化装置。它在二十世纪五十年代就已用于生产,是在自动上下料机构的基础上发展起来的一种机械装置,开始主要用来实现自动上下料和搬运工件,完成单机自动化和生产线自动化,随着应用范围的不段扩大,现在用来夹持工具和完成一定的作业。实践证明它可以代替人
5、手的繁重劳动,减轻工人的劳动强度,改善劳动条件,提高劳动生产率。平面关节型机器人又称SCARA型装配机器人,是Selective Compliance Assembly Robot Arm的缩写,意思是具有选择柔顺性的装配机器人手臂。在水平方向有柔顺性,在垂直方向有较大的刚性。它结构简单,动作灵活,多用于装配作业中,特别适合小规格零件的插接装配,如在电子工业零件的插接、装配中应用广泛。1.1 机械手的组成工业机械手由执行机构、驱动机构和控制机构三部分组成。1.1.1 执行机构(1)手部 既直接与工件接触的部分,一般是回转型或平动型(多为回转型,因其结构简单)。手部多为两指(也有多指);根据需要
6、分为外抓式和内抓式两种;也可以用负压式或真空式的空气吸盘(主要用于吸冷的,光滑表面的零件或薄板零件)和电磁吸盘。 传力机构形式教多,常用的有:滑槽杠杆式、连杆杠杆式、斜槭杠杆式、齿轮齿条式、丝杠螺母式、弹簧式和重力式。(2) 腕部 是连接手部和臂部的部件,并可用来调节被抓物体的方位,以扩大机械手的动作范围,并使机械手变的更灵巧,适应性更强。手腕有独立的自由度。有回转运动、上下摆动、左右摆动。一般腕部设有回转运动再增加一个上下摆动即可满足工作要求,有些动作较为简单的专用机械手,为了简化结构,可以不设腕部,而直接用臂部运动驱动手部搬运工件。目前,应用最为广泛的手腕回转运动机构为回转液压(气)缸,它
7、的结构紧凑,灵巧但回转角度小(一般小于 2700),并且要求严格密封,否则就难保证稳定的输出扭距。因此在要求较大回转角的情况下,采用齿条传动或链轮以及轮系结构。(3)臂部 手臂部件是机械手的重要握持部件。它的作用是支撑腕部和手部(包括工作或夹具),并带动他们做空间运动。臂部运动的目的:把手部送到空间运动范围内任意一点。如果改变手部的姿态(方位),则用腕部的自由度加以实现。因此,一般来说臂部具有三个自由度才能满足基本要求,即手臂的伸缩、左右旋转、升降(或俯仰)运动。手臂的各种运动通常用驱动机构(如液压缸或者气缸)和各种传动机构来实现,从臂部的受力情况分析,它在工作中既受腕部、手部和工件的静、动载
8、荷,而且自身运动较为多,受力复杂。因此,它的结构、工作范围、灵活性以及抓重大小和定位精度直接影响机械手的工作性能。(4) 行走机构 有的工业机械手带有行走机构,我国的正处于仿真阶段。1.1.2 驱动机构驱动机构是工业机械手的重要组成部分。根据动力源的不同, 工业机械手的驱动机构大致可分为液压、气动、电动和机械驱动等四类。采用液压机构驱动机械手,结构简单、尺寸紧凑、重量轻、控制方便。1.1.3 控制机构在机械手的控制上,有点动控制和连续控制两种方式。大多数用插销板进行点位控制,也有采用可编程序控制器控制、微型计算机控制,采用凸轮、磁盘磁带、穿孔卡等记录程序。主要控制的是坐标位置,并注意其加速度特
9、性。1.2机械手分类根据所承担的作业的特点,工业机械手可分为以下三类: 承担搬运工作的机械手:这种机械手在主要工艺设备运行时,用来完成辅助作业,如装卸毛坯、工件和工夹具。 生产工业用机械手:可用于完成工艺过程中的主要作业,如装配、焊接、涂漆、弯曲、切断等。 通用工业机械手:其用途广泛,可以完成各种工艺作业。 按功能分类 专用机械手:它是附属于主机的具有固定程序而无独立控制系统的机械装置。专用机械手具有动作少,工作对象单一,结构简单,实用可靠和造价低等特点,适用于大批大量的自动化生产,如自动机床,自动线的上、下料机械手和“加工中心”附属的自动换刀机械手。 通用机械手:又称工业机器人。它是一种具有
10、独立控制系统的机械装置。具有程序可变、工作范围大、定位精度高、通用性强的特点,适用于不断变换品种的中小批量自动化的生产。 示教再现机械手:采用示教法编程的通用机械手。所谓示教,即由人通过手动控制,“拎着”机械手做一遍操作示范,完成全部动作后,其储存装置即能记忆下来。机械手可按示范操作的程序行程进行重复的再现工作。按驱动方式分 液压传动机械手 气压传动机械手 机械传动机械手按控制方式分 固定程序机械手:控制系统是一个固定程序的控制器。程序简单, 程序数少,而且是固定的,行程可调但不能任意点定位。 可编程序机械手:控制系统是一个可变程序控制器。其程序可按需 要编排,行程能很方便改变。2 机械手总体
11、设计总体设计的任务:包括进行机械手的运动设计,确定主要工作参数,选择驱动系统,整体结构设计,最后绘出方案草图。2.1 主要技术参数主要技术参数见表2-1表2-1 机械手主要技术参数机械手类型平面关节型自由度4个(2个回转1个移动1个手部活动)大臂长300mm,回转运动,回转角210,直流电机驱动 小臂长200mm,回转运动,回转角240,直流电机驱动移动关节液压缸驱动 手指液压缸驱动,最大开距80mm ,夹持力100N3 手部设计手部(亦称抓取机构)是用来直接握持工件的部件,由于被握持工件的形状、尺寸大小、重量、材料性能、表面处理等的不同,则机械手的手部机构是多种多样的,大部分的手部结构是根据
12、特定的工件要求而设计的。常用的手部,按其握持工件的原理,大致可分成夹持式和吸附式两大类。本设计采用常用的夹钳式手部结构,它是最常见的夹持式结构。夹钳式手部是由手指、传动机构和驱动装置三部分组成的,它对抓取各种形状的工件具有较大的适应性,可以抓取轴、盘和套类零件。一般情况下多采用两个手指,少数采用三指或多指。本设计中选择较简单的两指结构。夹钳式手部设计的基本要求:1、应具有适当的夹紧力和驱动力 手指握力(夹紧力)大小要合适,力量过大则动力消耗多,结构庞大,不经济,甚至会损坏工件;力量过小则夹持不住或产生松动、脱落。在确定握力时,除考虑工件总量外,还应考虑传送或操作过程中所产生的惯性力和振动,亦保
13、证工件夹持安全可靠。对于手部的驱动装置来说,应有足够的驱动力。应当指出,由于机构传动力比不同,在一定的夹持力条件下,不同的传动机构所需驱动力的大小是不同的。2、手指应具有一定的开闭范围 手指应具有足够的开闭角度或开闭距离,以便于抓取或退出工件。3、应保证工件在手指内的夹持精度 应保证每个被夹持的工件,在手指内都有准确地相对位置。这对一些有方位要求的场合更为重要,如曲拐、凸轮轴一类复杂的工件,在机床上安装的位置要求严格,因此机械手的手部在夹持工件后应保持相对的位置精度。4、要求结构紧凑、重量轻、效率高 在保证本身刚度、强度的前提下,尽可能使结构紧凑、重量轻,以利于减轻手臂的负载。5、应考虑通用性
14、和特殊要求 一般情况下,手部多是专用的,为了扩大它的适用范围,提高它的通用化程度,以适应夹持不同尺寸和形状的工件需要,通常采取手指可调整的办法,如更换手指甚至更换整个手部。此外,还要考虑能适应工作环境提出的特殊要求,如耐高温、耐腐蚀、能承受锻锤冲击力等。3.1 确定手部结构根据设计要求设计出的手部结构如图3-1所示:图3-1 手部结构图图中为手指对工件的夹紧力,F为夹紧缸活塞杆的推力。3.2 手部受力分析经分析,手部受力图如图3-2所示图3-2 机械手手部受力分析图由图可知,手部结构对称,则 由 得 且由 得h=b 且由几何关系有h由上述等式可得:FN 即 F= 式中 b 手指回转中心到夹紧力
15、作用点之间的距离; C 手指回转中心到滑槽支点之间的距离; 工件被夹紧时手指滑槽方向与回转中心在水平方向的夹角。3.3 手部夹紧力的计算手指加在工件上的夹紧力,是设计手部的主要依据。必须对其大小、方向和作用点进行分析、计算。一般来说,夹紧力必须克服工件重力所产生的静载荷以及工件运动状态所产生的载荷(惯性力或惯性力矩),以使工件保持可靠的夹紧状态。手指对工件的夹紧力可按下式计算:1.51.024G=100N因为FN =100N得G=16.3N式中:K1安全系数,取K11.5;K2工作情况系数,主要考虑惯性力的影响。取K21.02; K3方位系数,根据工件形状以及手指与工件位置不同进行选定,K34
16、 G被抓工件所受重力(N),所以m=1.66kg。则:100=375N442N式中 手指传力效率,取0.85。3.4 手部夹紧缸的设计计算3.4.1 夹紧缸主要尺寸的计算由前知,夹紧缸为单作用弹簧复位液压缸,假设夹紧工件时的行程为25mm,时间为0.5s,则所需夹紧力为:442+462=904N式中: F活塞杆实际输出力; P弹弹簧压缩时的作用力。其中:式中: G弹簧材料的剪切模量,对于钢材,; D弹簧的钢丝直径(3mm); DZ弹簧中径(30mm); Z弹簧的有效圈数(18圈); L及S活塞的行程及弹簧的与预缩量,L=25mm, S=20mm。 F=904N1000N查表工作压力取1,考虑到
17、为使液压缸结构尺寸简单紧凑,取工作压力为2。由公式 得:24.5mm式中: D液压缸内径; P液压缸工作压力; 液压缸工作效率,0.95。由JB82666标准系列将缸内径圆整为D30mm,同理查得活塞杆直径d22m,3.4.2 缸体结构及验算缸体采用45号钢无缝钢管,由JB106867查得可取缸筒外径为38m,则壁厚4mm。(1)液压缸额定工作压力应低于一定极限值,以保证工作安全=36.36式中: D缸筒内径(m); D1缸筒外径(m); s缸筒材料的屈服点,(45号钢为340)。已知工作压力PN236.36,故安全。(2)为避免缸筒在工作时发生塑形变形,液压缸的额定压力PN值应与塑性变形压力
18、有一定的比例范围。PN(0.350.42)PPl式中:PPl缸筒发生完全塑性变形时的压力(),计算可得:已知实际工作压力PN221.67,故安全。3.4.3 活塞杆的设计计算活塞杆设计活塞一端用螺纹与活塞相连接,另一端也采用外螺纹与手指连接(如图)图3-3 活塞杆外端部结构图活塞杆直径d22mm,故取A40mm (螺纹长短型)活塞杆结构(如图)采用实心杆图3-4 活塞杆结构图杆体材料采用35号钢,加工后调质到硬度为229285HBS,必要时,再经高频淬火,硬度达4555HRC。活塞杆直径d的圆柱度公差值,应按8级精度加工,其圆度公差值,应按9、10级精度加工;端面T的垂直度公差值应加工成7级精
19、度;外圆表面粗糙度应处于0.40.8 之间。验算活塞杆的强度取活塞杆的计算长度为150mm,活塞杆已知32mm 则 ,属于短行程活塞杆,主要验算抗拉强度。2x =4.1mm已知d22mm,故安全。式中:F液压缸最大推力,F取1.59041356; D活塞杆直径,ns安全系数,一般取ns3; 活塞杆材料屈服极限(),查资料知35号钢为310 4 移动关节的设计计算4.1驱动方式的比较机械手的驱动系统有液压驱动,气压驱动,电机驱动,和机械传动四种。一台机械手可以只用一种驱动,也可以用几种方式联合驱动,各种驱动的特点见表4-1。表4-1 各种驱动的特点比较比较内 容驱动方式机械传动电机 驱动气压传动
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平面 关节 机械手 结构设计 32

限制150内