中考数学-折叠问题(共10页).doc
《中考数学-折叠问题(共10页).doc》由会员分享,可在线阅读,更多相关《中考数学-折叠问题(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2016年中考专题:折叠问题折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。图形折叠问题中题型的变化比较多,主要有以下几点:1图形的翻折部分在折叠前和折叠后的形状、大小不变,是全等形;2图形的翻折部分在折叠前和折叠后的位置关于折痕成轴对称;3将长方形纸片折叠,三角形是否为等腰三角形;4解决折叠问题时,要抓住图形之间最本质的位置关系,从而进一步发现其中的数量关系;5充分挖掘图形的几何性质,将其中的基本的数量关系,用方程的形
2、式表达出来,并迅速求解,这是解题时常用的方法之一。折叠问题数学思想:(1)思考问题的逆向(反方向),(2)从一般问题的特例人手,寻找问题解决的思路;(3)把一个复杂问题转化为解决过的基本问题的转化与化归思想;(4)归纳与分类的思想(把折纸中发现的诸多关系归纳出来,并进行分类);(5)从变化中寻找不变性的思想.用“操作”、“观察”、“猜想”、“分析”的手段去感悟几何图形的性质是学习几何的方法。折叠问题主要有以下题型:题型1:动手问题此类题目考查学生动手操作能力,它包括裁剪、折叠、拼图,它既考查学生的动手能力,又考查学生的想象能力,往往与面积、对称性质联系在一起题型2:证明问题动手操作的证明问题,
3、既体现此类题型的动手能力,又能利用几何图形的性质进行全等、相似等证明题型3:探索性问题此类题目常涉及到画图、测量、猜想证明、归纳等问题,它与初中代数、几何均有联系此类题目对于考查学生注重知识形成的过程,领会研究问题的方法有一定的作用,也符合新课改的教育理论。 典型例题一折叠后求度数例1将一张长方形纸片按如图所示的方式折叠,BC、BD为折痕,则CBD的度数为( )A600 B750 C900 D950 练习1如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D、C的位置,若EFB65,则AED等于( )A50 B55C60 D65CDEBA图 (2)2 把一张长方形纸片ABCD沿EF折叠后ED
4、与BC的交点为G,D、C分别在M 、N的位置上,若EFG=55,则1=_,2=_图 (1)3. 用一条宽相等的足够长的纸条,打一个结,如图(1)所示,然后轻轻拉紧、压平就可以得到如图(2)所示的正五边形ABCDE,其中BAC 度。二折叠后求面积例2如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将AED以DE为折痕向右折叠,AE与BC交于点F,则CEF的面积为( )A4B6C8D10练习1. 如图,正方形硬纸片ABCD的边长是4,点E、F分别是AB、BC的中点,若沿左图中的虚线剪开,拼成如下右图的一座“小别墅”,则图中阴影部分的面积是( )A2
5、 B4 C8 D10ABCDEEAAABBBCCCGDDDFFF图a图b图c2. 如图a,ABCD是一矩形纸片,AB6cm,AD8cm,E是AD上一点,且AE6cm。操作:(1)将AB向AE折过去,使AB与AE重合,得折痕AF,如图b;(2)将AFB以BF为折痕向右折过去,得图c。则GFC的面积是( )A.1cm2 B.2 cm2 C.3 cm2 D.4 cm2三折叠后求长度例3如图,已知边长为5的等边三角形ABC纸片,点E在AC边上,点F在AB边上,沿着EF折叠,使点A落在BC边上的点D的位置,且,则CE的长是( )(A) (B) (C) (D)练习1. 如图,在矩形ABCD中,AB6,BC
6、8。将矩形ABCD沿CE折叠后,使点D恰好落在对角线AC上的点F处。求EF的长;(2)求梯形ABCE的面积。2. 如图,折叠长方形(四个角都是直角,对边相等)的一边AD,点D落在BC边的点F处,已知AB=8cm,BC=10cm求EC的长3. 如图,将边长为8 cm的正方形纸片ABCD折叠,使点D落在BC中点E处,点A落在点F处,折痕为MN,求线段CN的长 四折叠后得图形例4将一张矩形纸对折再对折(如图),然后沿着图中的虚线剪下,得到、两部分,将展开后得到的平面图形是( )A矩形 B三角形 C梯形 D菱形练习1. 如图,把一个正方形三次对折后沿虚线剪下,得到的图形是( )2. 如图,把矩形ABC
7、D对折,折痕为MN(图甲),再把B点叠在折痕MN上的B处。得到RtABE(图乙),再延长EB交AD于F,所得到的AEF是( )A. 等腰三角形B. 等边三角形 C. 等腰直角三角形D. 直角三角形3. 如图,已知BC为等腰三角形纸片ABC的底边,ADBC,AD=BC. 将此三角形纸片沿AD剪开,得到两个三角形,若把这两个三角形拼成一个平面四边形,则能拼出互不全等的四边形的个数是( )A. 2 B. 3 C. 4 D. 5五折叠后得结论例5把ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则A与1+2之间有一种数量关系始终保持不变,请试着找一找这个规律,你发现的规律是( )A. A=1+2
8、 B. 2A=1+2C. 3A=21+2D. 3A=2(1+2)练习1. 从边长为a的正方形内去掉一个边长为b的小正方形(如图1),然后将剩余部分剪拼成一个矩形(如图2),上述操作所能验证的等式是( )A.a2b2 =(a+b)(a-b).(ab)2 = a22ab+ b2.(a+b)2 = a2 +2ab+ b2 .a2 +ab = a(a+b) 2. 如图,一张矩形报纸ABCD的长ABa cm,宽BCb cm,E、F分别是AB、CD的中点,将这张报纸沿着直线EF对折后,矩形AEFD的长与宽之比等于矩形ABCD的长与宽之比,则ab等于( )A B C D(1)(2)六折叠和剪切的综合应用例6
9、在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.李颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),张丰同学沿矩形的对角线AC折出CAE=DAC,ACF=ACB的方法得到菱形AECF(见方案二),请你通过计算,比较李颖同学和张丰同学的折法中,哪种菱形面积较大?ADEHFBCG(方案一)ADEFBC(方案二)练习1. 已知如图,矩形ABCD中(图1),ADAB,O为对角线的交点,过O作一直线分别交于BC、AD于N、M。(1)求证:梯形ABNM的面积等于梯形CDMN的面积;(2)如图2,当MN满足什么条件时,将矩形ABCD以MN为折痕,翻折后能使C点恰好与A点重合?(只写出满足的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 折叠 问题 10
限制150内