浙江省2017年中考数学真题分类汇编----压轴题(共26页).docx
《浙江省2017年中考数学真题分类汇编----压轴题(共26页).docx》由会员分享,可在线阅读,更多相关《浙江省2017年中考数学真题分类汇编----压轴题(共26页).docx(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上浙江省2017年中考数学真题分类汇编 压轴题一、压轴题-四边形1、(2017衢州)在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。点E是线段AB上的动点,连结DE,作DFDE,交OA于点F,连结EF。已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。(1)如图1,当t=3时,求DF的长; (2)如图2,当点E在线段AB上移动的过程中,DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tanDEF的值; (3)连结AD,当AD将DEF分成的两部分面积之比为1:2时,求相应t的值。
2、 2、(2017丽水)如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GFAF交AD于点G,设 =n.(1)求证:AE=GE; (2)当点F落在AC上时,用含n的代数式表示 的值; (3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值. 二、压轴题-圆3、(2017杭州)如图,已知ABC内接于O,点C在劣弧AB上(不与点A,B重合),点D为弦BC的中点,DEBC,DE与AC的延长线交于点E,射线AO与射线EB交于点F,与O交于点G,设GAB=,ACB=,EAG+EBA=,(1)
3、点点同学通过画图和测量得到以下近似数据:30405060120130140150150140130120猜想:关于的函数表达式,关于的函数表达式,并给出证明: (2)若=135,CD=3,ABE的面积为ABC的面积的4倍,求O半径的长 4、(2017温州)如图,已知线段AB=2,MNAB于点M,且AM=BM,P是射线MN上一动点,E,D分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE(1)当APB=28时,求B和 的度数; (2)求证:AC=AB (3)在点P的运动过程中当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶
4、点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;记AP与圆的另一个交点为F,将点F绕点D旋转90得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出ACG和DEG的面积之比 5、(2017宁波)有两个内角分别是它们对角的一半的四边形叫做半对角四边形 (1)如图1,在半对角四边形ABCD中,B D,C A,求B与C的度数之和;(2)如图2,锐角ABC内接于O,若边AB上存在一点D,使得BDBOOBA的平分线交OA于点E,连结DE并延长交AC于点F,AFE2EAF求证:四边形DBCF是半对角四边形; (3)如图3,在(2)的条件下,过点D作DGOB于点H,交BC
5、于点G当DHBG时,求BGH与ABC的面积之比三、压轴题-方程6、(2017台州)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根,比如对于方程 ,操作步骤是:第一步:根据方程系数特征,确定一对固定点A(0,1),B(5,2);第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C 的横坐标m即为该方程的一个实数根(如图1)第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D 的横坐标为n即为该方程的另一个实数根。(1)在图2 中,按照“第四步“的操作方法作出点D(请保留作
6、出点D时直角三角板两条直角边的痕迹) (2)结合图1,请证明“第三步”操作得到的m就是方程 的一个实数根; (3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程 的实数根,请你直接写出一对固定点的坐标; (4)实际上,(3)中的固定点有无数对,一般地,当 , , , 与a,b,c之间满足怎样的关系时,点P( , ),Q( , )就是符合要求的一对固定点? 四、压轴题-一次函数7、(2017绍兴)如图1,已知ABCD,AB/x轴,AB=6,点A的坐标为(1,-4),点D的坐标为(-3,4),点B在第四象限,点P是ABCD边上的一个动点. (1)若点P在边BC上,PD=CD,求
7、点P的坐标. (2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x-1上,求点P的坐标. (3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标(直接写出答案). 五、压轴题-二次函数8、(2017金华)(本题12分)如图1,在平面直角坐标系中,四边形OABC各顶点的坐标分别O(0,0),A(3, ),B(9,5 ),C(14,0).动点P与Q同时从O点出发,运动时间为t秒,点P沿OC方向以1单位长度/秒的速度向点C运动,点Q沿折线
8、OAABBC运动,在OA,AB,BC上运动的速度分别为3, , (单位长度/秒)当P,Q中的一点到达C点时,两点同时停止运动(1)求AB所在直线的函数表达式. (2)如图2,当点Q在AB上运动时,求CPQ的面积S关于t的函数表达式及S的最大值. (3)在P,Q的运动过程中,若线段PQ的垂直平分线经过四边形OABC的顶点,求相应的t值. 9、(2017嘉兴)如图,某日的钱塘江观潮信息如表:按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离 (千米)与时间 (分钟)的函数关系用图3表示,其中:“11:40时甲地交叉潮的潮头离乙地12千米”记为点 ,点 坐标为 ,曲线 可用二次函数 ( , 是常
9、数)刻画 (1)求 的值,并求出潮头从甲地到乙地的速度; (2)11:59时,小红骑单车从乙地出发,沿江边公路以 千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇? (3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为 千米/分,小红逐渐落后,问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度 , 是加速前的速度) 10、(2017湖州)如图,在平面直角坐标系 中,已知 , 两点的坐标分别为 , , 是线段 上一点(与 , 点不重合),抛物线 ( )经过点 , ,顶点为 ,抛物线 ( )经过点 , ,顶点为 , , 的
10、延长线相交于点 (1)若 , ,求抛物线 , 的解析式; (2)若 , ,求 的值; (3)是否存在这样的实数 ( ),无论 取何值,直线 与 都不可能互相垂直?若存在,请直接写出 的两个不同的值;若不存在,请说明理由 答案解析部分一、压轴题-四边形1、【答案】(1)解:当t=3时,如图1,点E为AB中点.点D为OB中点,DE/OA,DE=OA=4,OAAB,DEAB,OAB=DEA=90,又DFDE,EDF=90四边形DFAE是矩形,DF=AE=3.(2)解:DEF大小不变,如图2,过D作DMOA,DNAB,垂足分别是M、N,四边形OABC是矩形,OAAB,四边形DMAN是矩形,MDN=90
11、,DM/AB,DN/OA,点D为OB中点,M、N分别是OA、AB中点,DM=AB=3,DN=OA=4,EDF=90,FDM=EDN.又DMF=DNE=90,DMFDNE,EDF=90,tanDEF=(3)解:过D作DMOA,DNAB。垂足分别是M,N.若AD将DEF的面积分成1:2的两个部分,设AD交EF于点G,则易得点G为EF的三等分点.当点E到达中点之前时. NE=3-t,由DMFDNE得 MF=(3-t). AF=4+MF=-t+. 点为EF的三等分点。 (.t).由点A(8,0),D(4,3)得直线AD解析式为y=-+6. (.t)代入,得t=.当点E越过中点之后. NE=t-3,由D
12、MFDNE得MF=(t-3). AF=4-MF=-+. 点为EF的三等分点. (.). 代入直线AD解析式y=-+6. 得t=.【考点】矩形的判定与性质,相似三角形的判定与性质,锐角三角函数的定义,与一次函数有关的动态几何问题 【解析】【分析】(1)当t=3时,如图1,点E、D分别为AB、OB中点,得出DE/OA,DE=OA=4,根据OAAB得出DEAB,从而得出四边形DFAE是矩形,根据矩形性质求出DF=AE=3.(2)如图2,过D作DMOA,DNAB,垂足分别是M、N,四边形OABC、DMAN都是矩形,由平行得出,由D、M、N是中点又可以得出条件判断DMFDNE,从而得出tanDEF=。(
13、3)过D作DMOA,DNAB。垂足分别是M,N;若AD将DEF的面积分成1:2的两个部分,设AD交EF于点G,则易得点G为EF的三等分点.分点E到达中点之前或越过中点之后来讨论,得出 NE,由DMFDNE得 MF和AF的长度, 再算出直线AD的解析式,由点G为EF的三等分点得出G点坐标将其代入AD直线方程求出t值。 2、【答案】(1)证明:由对称得AE=FE,EAF=EFA,GFAE,EAF+FGA=EFA+EFG=90,FGA=EFG,EG=EF.AE=EG.(2)解:设AE=a,则AD=na,当点F落在AC上时(如图1),由对称得BEAF,ABE+BAC=90,DAC+BAC=90,ABE
14、=DAC,又BAE=D=90,ABEDAC , AB=DC,AB2=ADAE=naa=na2,AB0,AB= . .(3)解:设AE=a,则AD=na,由AD=4AB,则AB= .当点F落在线段BC上时(如图2),EF=AE=AB=a,此时 ,n=4.当点F落在矩形外部时,n4.点F落在矩形的内部,点G在AD上,FCGBCD,FCG90,若CFG=90,则点F落在AC上,由(2)得 ,n=16.若CGF=90(如图3),则CGD+AGF=90,FAG+AGF=90,CGD=FAG=ABE,BAE=D=90,ABEDGC, ,ABDC=DGAE,即( )2=(n-2)aa.解得 或 (不合题意,
15、舍去),当n=16或 时,以点F,C,G为顶点的三角形是直角三角形.【考点】矩形的性质,解直角三角形的应用 【解析】【分析】(1)因为GFAF,由对称易得AE=EF,则由直角三角形的两个锐角的和为90度,且等边对等角,即可证明E是AG的中点;(2)可设AE=a,则AD=na,即需要用n或a表示出AB,由BEAF和BAE=D=90,可证明ABEDAC , 则 ,因为AB=DC,且DA,AE已知表示出来了,所以可求出AB,即可解答;(3)求以点F,C,G为顶点的三角形是直角三角形时的n,需要分类讨论,一般分三个,FCG=90,CFG=90,CGF=90;根据点F在矩形ABCD的内部就可排除FCG=
16、90,所以就以CFG=90和CGF=90进行分析解答. 二、压轴题-圆3、【答案】(1)解:=+90,=+180连接OB,由圆周角定理可知:2BCA=360BOA,OB=OA,OBA=OAB=,BOA=1802,2=360(1802),=+90,D是BC的中点,DEBC,OE是线段BC的垂直平分线,BE=CE,BED=CED,EDC=90BCA=EDC+CED,=90+CED,CED=,CED=OBA=,O、A、E、B四点共圆,EBO+EAG=180,EBA+OBA+EAG=180,+=180(2)解:当=135时,此时图形如图所示,=45,=135,BOA=90,BCE=45,由(1)可知:
17、O、A、E、B四点共圆,BEC=90,ABE的面积为ABC的面积的4倍, , ,设CE=3x,AC=x,由(1)可知:BC=2CD=6,BCE=45,CE=BE=3x,由勾股定理可知:(3x)2+(3x)2=62 , x= ,BE=CE=3 ,AC= ,AE=AC+CE=4 ,在RtABE中,由勾股定理可知:AB2=(3 )2+(4 )2 , AB=5 ,BAO=45,AOB=90,在RtAOB中,设半径为r,由勾股定理可知:AB2=2r2 , r=5,O半径的长为5 【考点】余角和补角,三角形的面积,勾股定理,圆的综合题 【解析】【分析】(1)由圆周角定理即可得出=+90,然后根据D是BC的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江省 2017 年中 数学 分类 汇编 压轴 26
限制150内