等差数列前n项和教学设计(共4页).doc
《等差数列前n项和教学设计(共4页).doc》由会员分享,可在线阅读,更多相关《等差数列前n项和教学设计(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上等 差 数 列 前 n 项 和【教学目标】一、知识与技能1、借助几何图形,通过直观感知,能自觉获得等差数列的前项和公式的推导思路;理解公式的推导过程,再次感受数形结合的思想。 2、理解公式,能用公式解决简单的问题;通过公式运用进一步体会方程的思想;让学生进一步体会从特殊到一般,再从一般到特殊的思想方法;进一步加深对等差数列的认识。 二、过程与方法 1、启发式教学。从三角形图案入手,以高斯算法引入,设计了很多“想一想”、“试一试”、“探究”,就是为了启发、诱导学生,让学生主动发现问题,得到公式推导的思路,并能自觉地得到解决办法;指导学生合情推理,加深认识,正确运用。 2
2、、探究式学习。从高斯算法到倒序相加法,从特殊数列到一般数列求和,从公式的认识到运用,都是以学生探究为主,老师适当指导,总结。 三、情感态度与价值观1、让学生亲身经历数学研究的过程,体验创造的激情,享受成功的喜悦,感受数学的魅力。 2、培养学生良好的思维习惯,以及为科学勇于创新、不懈努力的探索精神。【教学重点、难点】重点:探索等差数列的前n项和公式的推导并获得思路;掌握公式,学会用公式解决简单的问题;体会等差数列的性质、公式与方程的联系。难点:等差数列前n项和公式推导思路的获得。解决办法:以三角图案入手,得自高斯算法的启发,设计一个“试一试”,借助几何图形的变化得到“倒”的思路。【教学用具】 实
3、物投影仪,多媒体软件,电脑【教学过程】 一、情景引入:1、(播放媒体资料)印度泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见图),奢靡之程度,可见一斑。你知道这个图案一共花了多少宝石吗?即: 1+2+3+100=?少年高斯是如何快速地得出了结论的呢?高斯用的是首尾配对的方法。特点: 首项与末项的和: 1100101, 第2项与倒数第2项的和: 299 101, 第3项与倒数第3项的和: 398 101, 第50项与倒数第50项的和: 5051101,于是所求的和是:
4、101505050。S100 = 1+2+3+ +100= 10150 = 50502、试一试:假如再给你同样多的珠宝,在原图的基础上你能设计出一个什么样的图案呢?把“全等三角形”倒置,与原图构成平行四边形。平行四边形中的每行宝石的个数均为101个,共100行。有什么启发? 1 + 2 + 3 + +98 +99 +100 100+ 99 + 98 + + 3 +2 +11+2+3+100=(100+1)1002=5050想一想:1、你能用一个字说出高斯算法的巧妙之处吗? (配) 2、你能用一个字说出第二种算法的巧妙之处吗?(倒)点出方法:倒序相加二、推进新课1、探究1:求1到n的正整数之和
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等差数列 教学 设计
限制150内