等腰三角形典型例题练习(共10页).doc
《等腰三角形典型例题练习(共10页).doc》由会员分享,可在线阅读,更多相关《等腰三角形典型例题练习(共10页).doc(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上等腰三角形典型例题练习参考答案与试题解析4在ABC中,AD是BAC的平分线,E、F分别为AB、AC上的点,且EDF+EAF=180,求证DE=DF考点:全等三角形的判定与性质;角平分线的定义分析:过D作DMAB,于M,DNAC于N,根据角平分线性质求出DN=DM,根据四边形的内角和定理和平角定义求出AED=CFD,根据全等三角形的判定AAS推出EMDFND即可解答:证明:过D作DMAB,于M,DNAC于N,即EMD=FND=90, AD平分BAC,DMAB,DNAC,DM=DN(角平分线性质),DME=DNF=90, EAF+EDF=180,MED+AFD=36018
2、0=180, AFD+NFD=180,MED=NFD,在EMD和FND中,EMDFND,DE=DF5在ABC中,ABC、ACB的平分线相交于点O,过点O作DEBC,分别交AB、AC于点D、E请说明DE=BD+EC考点:等腰三角形的判定与性质;平行线的性质分析:根据OB和OC分别平分ABC和ACB,和DEBC,利用两直线平行,内错角相等和等量代换,求证出DB=DO,OE=EC然后即可得出答案解答:解:在ABC中,OB和OC分别平分ABC和ACB,DBO=OBC,ECO=OCB,DEBC,DOB=OBC=DBO,EOC=OCB=ECO,DB=DO,OE=EC,DE=DO+OE,DE=BD+EC6已
3、知:如图,D是ABC的BC边上的中点,DEAB,DFAC,垂足分别为E,F,且DE=DF请判断ABC是什么三角形?并说明理由考点:等腰三角形的判定;全等三角形的判定与性质分析:用(HL)证明EBDFCD,从而得出EBD=FCD,即可证明ABC是等腰三角形解答:ABC是等腰三角形证明:连接AD,DEAB,DFAC,BED=CFD=90,且DE=DF,D是ABC的BC边上的中点,BD=DC,RtEBDRtFCD(HL),EBD=FCD,ABC是等腰三角形7如图,ABC是等边三角形,BD是AC边上的高,延长BC至E,使CE=CD连接DE(1)E等于多少度?(2)DBE是什么三角形?为什么?考点:等边
4、三角形的性质;等腰三角形的判定分析:(1)由题意可推出ACB=60,E=CDE,然后根据三角形外角的性质可知:ACB=E+CDE,即可推出E的度数;(2)根据等边三角形的性质可知,BD不但为AC边上的高,也是ABC的角平分线,即得:DBC=30,然后再结合(1)中求得的结论,即可推出DBE是等腰三角形解答:解:(1)ABC是等边三角形,ACB=60,CD=CE,E=CDE,ACB=E+CDE,(2)ABC是等边三角形,BDAC,ABC=60,E=30,DBC=E,DBE是等腰三角形8如图,在ABC中,ACB=90,CD是AB边上的高,A=30求证:AB=4BD考点:含30度角的直角三角形分析:
5、由ABC中,ACB=90,A=30可以推出AB=2BC,同理可得BC=2BD,则结论即可证明解答:解:ACB=90,A=30,AB=2BC,B=60又CDAB,DCB=30,BC=2BDAB=2BC=4BD9如图,ABC中,AB=AC,点D、E分别在AB、AC的延长线上,且BD=CE,DE与BC相交于点F求证:DF=EF考点:全等三角形的判定与性质;等腰三角形的性质分析:过D点作DGAE交BC于G点,由平行线的性质得1=2,4=3,再根据等腰三角形的性质可得B=2,则B=1,于是有DB=DG,根据全等三角形的判定易得DFGEFC,即可得到结论解答:证明:过D点作DGAE交BC于G点,如图,1=
6、2,4=3,AB=AC,B=2,B=1,DB=DG,而BD=CE,DG=CE,在DFG和EFC中,DFGEFC,DF=EF10已知等腰直角三角形ABC,BC是斜边B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE考点:全等三角形的判定与性质分析:延长CE,BA交于一点F,由已知条件可证得BFE全BEC,所以FE=EC,即CF=2CE,再通过证明ADBFAC可得FC=BD,所以BD=2CE解答:证明:如图,分别延长CE,BA交于一点FBEEC,FEB=CEB=90,BE平分ABC,FBE=CBE,又BE=BE,BFEBCE (ASA)FE=CECF=2CEAB=A
7、C,BAC=90,ABD+ADB=90,ADB=EDC,ABD+EDC=90又DEC=90,EDC+ECD=90,FCA=DBC=ABDADBAFCFC=DB,BD=2EC11(2012牡丹江)如图,ABC中AB=AC,P为底边BC上一点,PEAB,PFAC,CHAB,垂足分别为E、F、H易证PE+PF=CH证明过程如下:如图,连接APPEAB,PFAC,CHAB,SABP=ABPE,SACP=ACPF,SABC=ABCH又SABP+SACP=SABC,ABPE+ACPF=ABCHAB=AC,PE+PF=CH(1)如图,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?
8、请写出你的猜想,并加以证明:(2)填空:若A=30,ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,则AB边上的高CH=7点P到AB边的距离PE=4或10考点:等腰三角形的性质;三角形的面积分析:(1)连接AP先根据三角形的面积公式分别表示出SABP,SACP,SABC,再由SABP=SACP+SABC即可得出PE=PF+PH;(2)先根据直角三角形的性质得出AC=2CH,再由ABC的面积为49,求出CH=7,由于CHPF,则可分两种情况进行讨论:P为底边BC上一点,运用结论PE+PF=CH;P为BC延长线上的点时,运用结论PE=PF+CH解答:解:(1)如图,
9、PE=PF+CH证明如下:PEAB,PFAC,CHAB,SABP=ABPE,SACP=ACPF,SABC=ABCH,SABP=SACP+SABC,ABPE=ACPF+ABCH,又AB=AC,PE=PF+CH;(2)在ACH中,A=30,AC=2CHSABC=ABCH,AB=AC,2CHCH=49,CH=7分两种情况:P为底边BC上一点,如图PE+PF=CH,PE=CHPF=73=4;P为BC延长线上的点时,如图PE=PF+CH,PE=3+7=10故答案为7;4或1012数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等腰三角形 典型 例题 练习 10
限制150内