反比例函数与几何的综合应用及答案(共12页).doc
《反比例函数与几何的综合应用及答案(共12页).doc》由会员分享,可在线阅读,更多相关《反比例函数与几何的综合应用及答案(共12页).doc(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专训1 反比例函数与几何的综合应用名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值反比例函数与三角形的综合1如图,一次函数ykxb与反比例函数yx(6)(x0)的图象交于A(m,6),B(3,n)两点(1)求一次函数的解析式;(2)根据图象直接写出使kxb0)的图象过对角线的交点P并且与AB, (第4题)BC分别交于D,E两点,连接OD,OE,D
2、E,则ODE的面积为_5如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BEAC,AEOB.(1)求证:四边形AEBD是菱形;(2)如果OA3,OC2,求出经过点E的双曲线对应的函数解析式 (第5题) 反比例函数与菱形的综合 6如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1,反比例函数yx(3)的图象 (第6题)经过A,B两点,则菱形ABCD的面积为( )A2 B4C2 D47如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数yx(k)(k0,x0)的图象上,点D的坐标为
3、(4,3)(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在反比例函数yx(k)(k0,x0)的图象上时,求菱形ABCD沿x轴正方向平移的距离 (第7题) 反比例函数与正方形的综合8如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OC分别在x轴,y轴上,点B的坐标为(2,2),反比例函数yx(k)(x0,k0)的图象经过线段BC的中点D(1)求k的值;(2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PRy轴于点R,作PQBC所在直线于点Q,记四边形CQPR的面积为S,求S关于x的函数解析式并写出x的取值范围 (第8题) 反比例
4、函数与圆的综合 (第9题)9如图,双曲线yx(k)(k0)与O在第一象限内交于P,Q两点,分别过P,Q两点向x轴和y轴作垂线,已知点P的坐标为(1,3),则图中阴影部分的面积为_10如图,反比例函数yx(k)(k0)的图象与O相交某同学在O内做随机扎针试验,求针头落在阴影区域内的概率 (第10题) 专训2 全章热门考点整合应用名师点金:反比例函数及其图象、性质是历年来中考的热点,既有与本学科知识的综合,也有与其他学科知识的综合,题型既有选择、填空,也有解答类型其热门考点可概括为:1个概念,2个方法,2个应用及1个技巧1个概念:反比例函数的概念1若y(m1)x|m|2是反比例函数,则m的取值为(
5、 ) A1 B1C1 D任意实数2某学校到县城的路程为5 km,一同学骑车从学校到县城的平均速度v(km/h)与所用时间t(h)之间的函数解析式是( )Av5t Bvt5Cvt(5) Dv5(t)3判断下面哪些式子表示y是x的反比例函数:xy3(1);y5x;y5x(2);yx(2a)(a为常数且a0)其中_是反比例函数(填序号)2个方法:画反比例函数图象的方法4已知y与x的部分取值如下表: x654321123456y11.21.52366321.51.21(1)试猜想y与x的函数关系可能是你学过的哪类函数,并写出这个函数的解析式;(2)画出这个函数的图象 求反比例函数解析式的方法5已知反比
6、例函数yx(k)的图象与一次函数yxb的图象在第一象限内相交于点A(1,k4)试确定这两个函数的解析式 6如图,已知A(4,n),B(2,4)是一次函数ykxb的图象和反比例函数yx(m)的图象的两个交点求:(1)反比例函数和一次函数的解析式;(2)直线AB与x轴的交点C的坐标及AOB的面积;(3)方程kxbx(m)0的解(请直接写出答案);(4)不等式kxbx(m)0的解集(请直接写出答案) (第6题) 2个应用反比例函数图象和性质的应用7画出反比例函数yx(6)的图象,并根据图象回答问题:(1)根据图象指出当y2时x的值;(2)根据图象指出当2x1且x0时y的取值范围;(3)根据图象指出当
7、3y0)的图象上,m1,n2,即 A(1,6),B(3,2)又A(1,6),B(3,2)在一次函数ykxb的图象上,23kb,(6kb,)解得b8,(k2,)即一次函数解析式为y2x8. (第1题)(2)根据图象可知使kxbx(6)成立的x的取值范围是0x3.(3)如图,分别过点A,B作AEx轴,BCx轴,垂足分别为E,C,设直线AB交x轴于D点令2x80,得x4,即D(4,0)A(1,6),B(3,2),AE6,BC2.SAOBSAODSODB2(1)462(1)428.2(1)证明:点A,B分别在x轴,y轴上,点D在第一象限内,DCx轴于点C,AOBDCA90.在RtAOB和RtDCA中,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 反比例 函数 几何 综合 应用 答案 12
限制150内