2014年天津市高考数学试卷(文科)答案与解析(共16页).doc
《2014年天津市高考数学试卷(文科)答案与解析(共16页).doc》由会员分享,可在线阅读,更多相关《2014年天津市高考数学试卷(文科)答案与解析(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2014年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1(5分)(2014天津)i是虚数单位,复数=()A1iB1+iC+iD+i考点:复数代数形式的乘除运算菁优网版权所有专题:数系的扩充和复数分析:将复数的分子与分母同时乘以分母的共轭复数34i,即求出值解答:解:复数=,故选A点评:本题考查了复数的运算法则和共轭复数的意义,属于基础题2(5分)(2014天津)设变量x,y满足约束条件,则目标函数z=x+2y的最小值为()A2B3C4D5考点:简单线性规划菁优网版权所有专题:不等式的解法及应用分析:作出不
2、等式对应的平面区域,利用线性规划的知识,通过平移即可求z的最大值解答:解:作出不等式对应的平面区域,由z=x+2y,得y=,平移直线y=,由图象可知当直线y=经过点B(1,1)时,直线y=的截距最小,此时z最小此时z的最小值为z=1+21=3,故选:B点评:本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法3(5分)(2014天津)已知命题p:x0,总有(x+1)ex1,则p为()Ax00,使得(x0+1)e1Bx00,使得(x0+1)e1Cx0,总有(x+1)ex1Dx0,总有(x+1)ex1考点:命题的否定;全称命题菁优网版权所有专题:简易逻辑分析:据全称命题的否定为特称
3、命题可写出命题p的否定解答:解:根据全称命题的否定为特称命题可知,p为x00,使得(x0+1)e1,故选:B点评:本题主要考查了全称命题的否定的写法,全称命题的否定是特称命题4(5分)(2014天津)设a=log2,b=log,c=2,则()AabcBbacCacbDcba考点:对数值大小的比较菁优网版权所有专题:函数的性质及应用分析:根据对数函数和幂函数的性质求出,a,b,c的取值范围,即可得到结论解答:解:log21,log0,021,即a1,b0,0c1,acb,故选:C点评:本题主要考查函数值的大小比较,利用对数函数和幂函数的性质是解决本题的关键,比较基础5(5分)(2014天津)设a
4、n的首项为a1,公差为1的等差数列,Sn为其前n项和,若S1,S2,S4成等比数列,则a1=()A2B2CD考点:等比数列的性质;等差数列的性质菁优网版权所有专题:等差数列与等比数列分析:由等差数列的前n项和求出S1,S2,S4,然后再由S1,S2,S4成等比数列列式求解a1解答:解:an是首项为a1,公差为1的等差数列,Sn为其前n项和,S1=a1,S2=2a11,S4=4a16,由S1,S2,S4成等比数列,得:,即,解得:故选:D点评:本题考查等差数列的前n项和公式,考查了等比数列的性质,是基础的计算题6(5分)(2014天津)已知双曲线=1(a0,b0)的一条渐近线平行于直线l:y=2
5、x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A=1B=1C=1D=1考点:双曲线的标准方程菁优网版权所有专题:圆锥曲线的定义、性质与方程分析:先求出焦点坐标,利用双曲线=1(a0,b0)的一条渐近线平行于直线l:y=2x+10,可得=2,结合c2=a2+b2,求出a,b,即可求出双曲线的方程解答:解:双曲线的一个焦点在直线l上,令y=0,可得x=5,即焦点坐标为(5,0),c=5,双曲线=1(a0,b0)的一条渐近线平行于直线l:y=2x+10,=2,c2=a2+b2,a2=5,b2=20,双曲线的方程为=1故选:A点评:本题考查双曲线的方程与性质,考查学生的计算能力,属于中档题
6、7(5分)(2014天津)如图,ABC是圆的内接三角形,BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:BD平分CBF;FB2=FDFA;AECE=BEDE;AFBD=ABBF所有正确结论的序号是()ABCD考点:与圆有关的比例线段;命题的真假判断与应用菁优网版权所有专题:直线与圆分析:本题利用角与弧的关系,得到角相等,再利用角相等推导出三角形相似,得到边成比例,即可选出本题的选项解答:解:圆周角DBC对应劣弧CD,圆周角DAC对应劣弧CD,DBC=DAC弦切角FBD对应劣弧BD,圆周角BAD对应劣弧BD,FBD=BAFAD是BAC
7、的平分线,BAF=DACDBC=FBD即BD平分CBF即结论正确又由FBD=FAB,BFD=AFB,得FBDFAB由,FB2=FDFA即结论成立由,得AFBD=ABBF即结论成立正确结论有故答案为D点评:本题考查了弦切角、圆周角与弧的关系,还考查了三角形相似的知识,本题总体难度不大,属于基础题8(5分)(2014天津)已知函数f(x)=sinx+cosx(0),xR,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,则f(x)的最小正周期为()ABCD2考点:三角函数的周期性及其求法;正弦函数的图象菁优网版权所有专题:三角函数的图像与性质分析:根据f(x)=2sin(x+),再
8、根据曲线y=f(x)与直线y=1的交点中,相邻交点距离的最小值为,正好等于f(x)的周期的倍,求得函数f(x)的周期T的值解答:解:已知函数f(x)=sinx+cosx=2sin(x+)(0),xR,在曲线y=f(x)与直线y=1的交点中,若相邻交点距离的最小值为,正好等于f(x)的周期的倍,设函数f(x)的最小正周期为T,则=,T=,故选:C点评:本题主要考查函数y=Asin(x+)的图象特征,得到正好等于f(x)的周期的倍,是解题的关键,属于中档题二、填空题:本大题共6小题,每小题5分,共30分.9(5分)(2014天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的
9、方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取60名学生考点:分层抽样方法菁优网版权所有专题:概率与统计分析:先求出一年级本科生人数所占总本科生人数的比例,再用样本容量乘以该比列,即为所求解答:解:根据分层抽样的定义和方法,一年级本科生人数所占的比例为=,故应从一年级本科生中抽取名学生数为300=60,故答案为:60点评:本题主要考查分层抽样的定义和方法,利用了总体中各层的个体数之比等于样本中对应各层的样本数之比,属于基础题10(5分)(2014天津)一个几何体的三视图如图所示(
10、单位:m),则该几何体的体积为m3考点:由三视图求面积、体积菁优网版权所有专题:立体几何分析:几何体是圆锥与圆柱的组合体,判断圆柱与圆锥的高及底面半径,代入圆锥与圆柱的体积公式计算解答:解:由三视图知:几何体是圆锥与圆柱的组合体,其中圆柱的高为4,底面直径为2,圆锥的高为2,底面直径为4,几何体的体积V=124+222=4+=故答案为:点评:本题考查了由三视图求几何体的体积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键11(5分)(2014天津)阅读如图的框图,运行相应的程序,输出S的值为4考点:程序框图菁优网版权所有专题:算法和程序框图分析:写出前二次循环,满足判断框条件,输出
11、结果解答:解:由框图知,第一次循环得到:S=8,n=2;第二次循环得到:S=4,n=1;退出循环,输出4故答案为:4点评:本题考查循环结构,判断框中n1退出循环是解题的关键,考查计算能力12(5分)(2014天津)函数f(x)=lgx2的单调递减区间是(,0)考点:复合函数的单调性菁优网版权所有专题:函数的性质及应用分析:先将f(x)化简,注意到x0,即f(x)=2lg|x|,再讨论其单调性,从而确定其减区间;也可以函数看成由复合而成,再分别讨论内层函数和外层函数的单调性,根据“同増异减”再来判断解答:解:方法一:y=lgx2=2lg|x|,当x0时,f(x)=2lgx在(0,+)上是增函数;
12、当x0时,f(x)=2lg(x)在(,0)上是减函数函数f(x)=lgx2的单调递减区间是(,0)故答案为:(,0)方法二:原函数是由复合而成,t=x2在(,0)上是减函数,在(0,+)为增函数;又y=lgt在其定义域上为增函数,f(x)=lgx2在(,0)上是减函数,在(0,+)为增函数,函数f(x)=lgx2的单调递减区间是(,0)故答案为:(,0)点评:本题是易错题,学生在方法一中,化简时容易将y=lgx2=2lg|x|中的绝对值丢掉,方法二对复合函数的结构分析也是最常用的方法,此外,本题还可以利用数形结合的方式,即画出y=2lg|x|的图象,得到函数的递减区间13(5分)(2014天津
13、)已知菱形ABCD的边长为2,BAD=120,点E,F分别在边BC,DC上,BC=3BE,DC=DF,若=1,则的值为2考点:平面向量数量积的运算菁优网版权所有专题:平面向量及应用分析:根据向量的基本定理,结合数量积的运算公式,建立方程即可得到结论解答:解:BC=3BE,DC=DF,=,=,=+=+=+,=+=+=+,菱形ABCD的边长为2,BAD=120,|=|=2,=22cos120=2,=1,(+)(+)=+(1+)=1,即4+42(1+)=1,整理得,解得=2,故答案为:2点评:本题主要考查向量的基本定理的应用,以及数量积的计算,要求熟练掌握相应的计算公式14(5分)(2014天津)已
14、知函数f(x)=,若函数y=f(x)a|x|恰有4个零点,则实数a的取值范围为(1,2)考点:根的存在性及根的个数判断菁优网版权所有专题:函数的性质及应用分析:由y=f(x)a|x|=0得f(x)=a|x|,利用数形结合即可得到结论解答:解:由y=f(x)a|x|=0得f(x)=a|x|,作出函数y=f(x),y=a|x|的图象,当a0,不满足条件,a0,当a=2时,此时y=a|x|与f(x)有三个 交点,当a=1时,此时y=a|x|与f(x)有五个 交点,要使函数y=f(x)a|x|恰有4个零点,则1a2,故答案为:(1,2)点评:本题主要考查函数零点个数的应用,利用数形结合是解决本题的关键
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2014 天津市 高考 数学试卷 文科 答案 解析 16
限制150内