2016届高考数学二轮复习专题强化练:专题15+圆锥曲线(人教版含解析)(共19页).doc
《2016届高考数学二轮复习专题强化练:专题15+圆锥曲线(人教版含解析)(共19页).doc》由会员分享,可在线阅读,更多相关《2016届高考数学二轮复习专题强化练:专题15+圆锥曲线(人教版含解析)(共19页).doc(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2016高考数学二轮复习 第一部分 微专题强化练 专题15 圆锥曲线一、选择题1(2015四川文,7)过双曲线x21的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则|AB|()A.B2C6D4答案D解析由题意,a1,b,故c2,渐近线方程为yx,将x2代入渐近线方程,得y1,22,故|AB|4,选D.2设P是椭圆1上一点,M、N分别是两圆:(x2)2y21和(x2)2y21上的点,则|PM|PN|的最小值,最大值分别为()A4,8B2,6C6,8D8,12答案A解析如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA|PB|2a
2、6,连接PA,PB,分别与两圆相交于M、N两点,此时|PM|PN|最小,最小值为|PA|PB|2R4;连接PA,PB并延长,分别与两圆相交于M、N两点,此时|PM|PN|最大,最大值为|PA|PB|2R8,即最小值和最大值分别为4、8.方法点拨涉及椭圆(或双曲线)两焦点距离的问题或焦点弦问题,及到抛物线焦点(或准线)距离的问题,可优先考虑圆锥曲线的定义3(文)(2015唐山一模)已知抛物线的焦点F(a,0)(a0),则抛物线的标准方程是()Ay22axBy24axCy22axDy24ax答案B解析设抛物线方程为y2mx,由焦点为F(a,0),a0知m0),直线方程为xmy,代入抛物线方程得y2
3、2pmyp20,设A(x1,y1)、B(x2,y2),得x1x2y1y2y1y2m2y1y2(y1y2)y1y2p212p4,即抛物线C的方程为y28x.方法点拨求圆锥曲线标准方程时“先定型,后计算”,即先确定是何种曲线,焦点在哪个轴上,然后利用条件求a、b、p的值4(文)(2015南昌市一模)以坐标原点为对称中心,两坐标轴为对称轴的双曲线C的一条渐近线的倾斜角为,则双曲线C的离心率为()A2或B2或C.D2答案B解析(1)当双曲线的焦点在x轴上时,由题意知双曲线C:1(a0,b0)的渐近线方程为yx,所以tan,所以ba,c2a,故双曲线C的离心率e2;(2)当双曲线的焦点在y轴上时,由题意
4、知双曲线C:1(a0,b0)的渐近线方程为yx,所以tan,所以ab,c2b,故双曲线C的离心率e.综上所述,双曲线C的离心率为2或.(理)(2015东北三省三校二模)已知双曲线1(a0,b0)的左右焦点分别为F1、F2,以F1F2为直径的圆被直线1截得的弦长为a,则双曲线的离心率为()A3B2 C. D.答案D解析由已知得:O(0,0)到直线1的距离为:d,由题意得:2d2r2即22c2整理得:c4a2c2a40,即e4e210,解得:e22或e2(舍),e.方法点拨1.求椭圆、双曲线的离心率问题,关键是根据已知条件确定a、b、c的关系,然后将b用a、c代换,求e的值;另外要注意双曲线的渐近
5、线与离心率的关系2注意圆锥曲线的对称性在解题中的应用5(文)设F1、F2分别是椭圆E:x21(0b0,b0)和椭圆1(mn0)有共同的焦点F1、F2,P是两条曲线的一个交点,则|PF1|PF2| ()Am2a2 B. C.(ma) D. ma答案D解析不妨设F1、F2分别为左、右焦点,P在双曲线的右支上,由题意得|PF1|PF2|2,|PF1|PF2|2,|PF1|,|PF2|,故|PF1|PF2|ma.7(文)(2015湖南文,6)若双曲线1的一条渐近线经过点(3,4),则此双曲线的离心率为()A. B. C. D.答案D解析考查双曲线的几何性质由题设利用双曲线的渐近线方程经过的点(3,4)
6、,得到a、b关系式,然后求出双曲线的离心率即可因为双曲线1的一条渐近线经过点(3,4),3b4a,9(c2a2)16a2,e,故选D.(理)(2015重庆文,9)设双曲线1(a0,b0)的右焦点是F,左、右顶点分别是A1,A2,过F作A1A2的垂线与双曲线交于B,C两点若A1BA2C,则该双曲线的渐近线的斜率为()AB C1D答案C解析考查双曲线的几何性质由已知得右焦点F(c,0)(其中c2a2b2,c0),A1(a,0),A2(a,0);B(c,),C(c,);从而A1B(ca,),(ca,),又因为A1BA2C,所以A1BA2C0,即(ca)(ca)()()0;化简得到11,即双曲线的渐近
7、线的斜率为1;故选C.8(2015新课标理,5)已知M(x0,y0)是双曲线C:y21上的一点,F1,F2是C的两个焦点若0,不妨设A(,a),B(,a),C(x0,x),则(x0,ax),(x0,ax),ACB90.(x0,ax)(x0,ax)0.xa(ax)20,且xa0.(ax)(ax1)0,ax10.xa1,又x0.a1.(理)如图,正方形ABCD和正方形DEFG的边长分别为a、b(a0)经过C、F两点,则_.答案1解析由题可得C(,a),F(b,b),C、F在抛物线y22px上,1,故填1.10(文)(2015湖南理,13)设F是双曲线C:1的一个焦点若C上存在点P,使线段PF的中点
8、恰为其虚轴的一个端点,则C的离心率为_答案解析考查双曲线的标准方程及其性质根据对称性,不妨设F(c,0),短轴端点为(0,b),从而可知点(c,2b)在双曲线上,1e.(理)(2015南昌市二模)过原点的直线l与双曲线C:1(a0,b0)的左右两支分别相交于A,B两点,F(,0)是双曲线C的左焦点,若|FA|FB|4,0,则双曲线C的方程是_答案y21解析由已知得:c,FAFB,设右焦点为F1,则四边形FAF1B为矩形,|AB|2c2且|FA|2|FB|2(|FA|FB|)22|FA|FB|162|FA|FB|,|AB|2|FA|2|FB|2,|FA|FB|2,(|FA|FB|)2(|FA|F
9、B|)24|FA|FB|8,|FA|FB|2,即|AF|AF1|2,a,b21,双曲线标准方程为y21.三、解答题11(文)(2015湖南文,20)已知抛物线C1:x24y的焦点F也是椭圆C2:1(ab0)的一个焦点,C1与C2的公共弦的长为2.过点F的直线l与C1相交于A,B两点,与C2相交于C,D两点,且与同向(1)求C2的方程;(2)若|AC|BD|,求直线l的斜率分析考查直线与圆锥曲线的位置关系;椭圆的性质和转化思想,设而不求、整体代换思想及运算求解能力等(1)由F也是椭圆C2的一个焦点及C1与C2的公共弦长列方程组求解;(2) 设A(x1,y1),B(x2,y2),C(x3,y3),
10、D(x4,y4),根据,可得,(x3x4)24x3x4(x1x2)24x1x2,设直线l的斜率为k,则l的方程为ykx1,联立直线与抛物线方程、直线与椭圆方程、利用韦达定理进行计算即可得到结果解析(1)由C1:x24y知其焦点F的坐标为(0,1),因为F也是椭圆C2的一个焦点,所以a2b21 ;又C1与C2的公共弦长为2,C1与C2都关于y轴对称,且C1的方程为:x24y,由此易知C1与C2的公共点的坐标为(,),1,联立得a29,b28,故C2的方程为1.(2)如图,设A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4), 因与同向,且|AC|BD|,所以,从而x3x1x4
11、x2,即x3x4x1x2,于是(x3x4)24x3x4(x1x2)24x1x2设直线l的斜率为k,则l的方程为ykx1,由得x24kx40,由x1,x2是这个方程的两根,x1x24k,x1x24由得(98k2)x216kx640,而x3,x4是这个方程的两根,x3x4,x3x4 将、代入,得16(k21).即16(k21),所以(98k2)2169,解得k,即直线l的斜率为.(理)(2015洛阳市期末)已知椭圆C:1(ab0)的离心率为,一个焦点与抛物线y24x的焦点重合,直线l:ykxm与椭圆C相交于A,B两点(1)求椭圆C的标准方程;(2)设O为坐标原点,kOAkOB,判断AOB的面积是否
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 高考 数学 二轮 复习 专题 强化 15 圆锥曲线 人教版含 解析 19
限制150内