2016一元二次函数分类练习题(共20页).doc
《2016一元二次函数分类练习题(共20页).doc》由会员分享,可在线阅读,更多相关《2016一元二次函数分类练习题(共20页).doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 二次函数分类复习题【二次函数的定义】(考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式)1、下列函数中,是二次函数的是 . y=x24x+1; y=2x2; y=2x2+4x; y=3x; y=2x1; y=mx2+nx+p; y =错误!未定义书签。; y=5x。2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t4秒时,该物体所经过的路程为 。3、若函数y=(m2+2m7)x2+4x+5是关于x的二次函数,则m的取值范围为 。4、若函数y=(m2)xm 2+5x+1是关于的二次函数,则m的值为 。6、已知函数y=
2、(m1)xm2 +1+5x3是二次函数,求m的值。7.函数, 当_时, 它是一次函数; 当_时, 它是二次函数. 8.将变为的形式,则=_。9,已知二次函数的图象过原点则a的值为【二次函数的对称轴、顶点、最值】 二次函数的图像抛物线的时候应抓住以下五点:a,开口方向; b,对称轴; c,顶点; d,与x轴的交点; e,与y轴的交点填空题关系式一般式y=ax2bx+c(a)顶点式y=a(x-h) 2k(a)图象形状抛物线开口方向当a0时,开口向_ ;当a0对称轴左侧,即x-或x-或xh,y随x的a0对称轴左侧,即x-或x-或xh,y随x的而最大值或最小值a0当x=-时,y最小当x=h时,y最小k
3、a1时,y随着x的增大而增大,当x1时,y随x的增大而 ;当x 2时,y随x的增大而增大;当x 2时,y随x的增大而减少;则x1时,y的值为 。3.已知二次函数y=x2(m+1)x+1,当x1时,y随x的增大而增大,则m的取值范围是 .4.已知二次函数y=x2+3x+的图象上有三点A(x1,y1),B(x2,y2),C(x3,y3)且3x1x20,b0,c0B.a0,b0,c=0 C.a0,b0,b0,c 0Bb -2a Ca-b+c 0Dc0; a+b+c 0a-b+c 0b2-4ac0abc 0 ;其中正确的为( ) ABC D4.当bbc,且abc0,则它的图象可能是图所示的( ) 6二
4、次函数yax2bxc的图象如图5所示,那么abc,b24ac, 2ab,abc 四个代数式中,值为正数的有( ) A.4个 B.3个 C.2个 D.1个7.在同一坐标系中,函数y= ax2+c与y= (a 0时,y随x的增大而增大,则二次函数ykx2+2kx的图象大致为图中的( )A B C D 10.已知抛物线yax2bxc(a0)的图象如图所示,则下列结论: a,b同号;当x1和x3时,函数值相同;4ab0;当y2时,x的值只能取0;其中正确的个数是( )A1 B2 C3D411.已知二次函数yax2bxc经过一、三、四象限(不经过原点和第二象限)则直线yaxbc不经过( )A第一象限B第
5、二象限C第三象限 D第四象限11.37已知y=ax2+bx+c的图象如下,则:a_0 b_0 c_0 a+b+c_0,a-b+c_0。2a+b_0 b2-4ac_0 4a+2b+c 012.二次函数的图象如图所示有下列结论: ; ; ; ;当时,等于 有两个不相等的实数根有两个不相等的实数根有两个不相等的实数根有两个不相等的实数根 其中正确的是()13. .小明从右边的二次函数图象中,观察得出了下面的五条信息:0214. ,函数的最小值为,当时,15. 当时,你认为其中正确的个数为()23 45 16.已知二次函数,其中满足和,则该二次函数图象的对称轴是直线17.直已知y=ax2+bx+c中a
6、0,c0 ,0,0 B.a0, 0 C.a0, 0 D.a0, 010. 已知二次函数y=x2+mx+m-5,求证不论m取何值时,抛物线总与x轴有两个交点;当m取何值时,抛物线与x轴两交点之间的距离最短。11.如果抛物线y=x2-mx+5m2与x轴有交点,则m_【函数解析式的求法】一、已知抛物线上任意三点时,通常设解析式为一般式y=ax2+bx+c,然后解三元方程组求解; 1已知二次函数的图象经过A(0,3)、B(1,3)、C(1,1)三点,求该二次函数的解析式。 2已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点且BC5,求该二次函数的解析式。3.已知二次函数当x=4时Y有最2值是.
7、且过(6.)点求解析式?4.已知抛物线在X轴上截得的线段长为.且顶点坐标为(,)求解析式?(讲解对称性书写)5.y= ax2+bx+c图象与x轴交于A、B与y轴交于C,OA=2,OB=1 ,OC=1,求函数解析式二、已知抛物线的顶点坐标,或抛物线上纵坐标相同的两点和抛物线上另一点时,通常设解析式为顶点式y=a(xh)2+k求解。 1已知二次函数的图象的顶点坐标为(1,6),且经过点(2,8),求该二次函数的解析式。 2已知二次函数的图象的顶点坐标为(1,3),且经过点P(2,0)点,求二次函数的解析式。三、已知抛物线与轴的交点的坐标时,通常设解析式为交点式y=a(xx1)(xx2)。 1二次函
8、数的图象经过A(1,0),B(3,0),函数有最小值8,求该二次函数的解析式。6已知x1时,函数有最大值5,且图形经过点(0,3),则该二次函数的解析式 。7抛物线y=2x2+bx+c与x 轴交于(2,0)、(3,0),则该二次函数的解析式 。8若抛物线y=ax2+bx+c的顶点坐标为(1,3),且与y=2x2的开口大小相同,方向相反,则该二次函数的解析式 。9抛物线y=2x2+bx+c与x 轴交于(1,0)、(3,0),则b ,c .10若抛物线与x 轴交于(2,0)、(3,0),与y轴交于(0,4),则该二次函数的解析式 。11根据下列条件求关于x的二次函数的解析式(1) 当x=3时,y最
9、小值=1,且图象过(0,7)(2) 图象过点(0,2)(1,2)且对称轴为直线x=(3) 图象经过(0,1)(1,0)(3,0)(4) 当x=1时,y=0; x=0时,y= 2,x=2 时,y=3(5) 抛物线顶点坐标为(1,2)且通过点(1,10)11当二次函数图象与x轴交点的横坐标分别是x1= 3,x2=1时,且与y轴交点为(0,2),求这个二次函数的解析式12已知二次函数y=ax2+bx+c的图象与x 轴交于(2,0)、(4,0),顶点到x 轴的距离为3,求函数的解析式。13知二次函数图象顶点坐标(3,)且图象过点(2,),求二次函数解析式及图象与y轴的交点坐标。14已知二次函数图象与x
10、轴交点(2,0), (1,0)与y轴交点是(0,1)求解析式及顶点坐标。15若二次函数y=ax2+bx+c经过(1,0)且图象关于直线x= 对称,那么图象还必定经过哪一点?16y= x2+2(k1)x+2kk2,它的图象经过原点,求解析式 与x轴交点O、A及顶点C组成的OAC面积。17抛物线y= (k22)x2+m4kx的对称轴是直线x=2,且它的最低点在直线y= x+2上,求函数解析式。【二次函数应用】一、抛物线与x轴交点为A,B,(A在B左侧)顶点为C.与Y轴交于点D(1)求ABC的面积。(2)若在抛物线上有一点M,使ABM的面积是ABC的面积的倍。求M点坐标(得分点的把握)(3)在该抛物
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 一元 二次 函数 分类 练习题 20
限制150内