2016年中考数学分类汇编二次函数压轴题(共30页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2016年中考数学分类汇编二次函数压轴题(共30页).doc》由会员分享,可在线阅读,更多相关《2016年中考数学分类汇编二次函数压轴题(共30页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2016年中考数学与二次函数有关的压轴题纵观2016年全国各省市中考数学试卷其中与二次函数有关的压轴题,其考点涉及:一次函数、二次函数的性质,函数图像上点的坐标与方程的关系;轴对称和等腰三角形的性质;特殊平行四边形性质;图形的旋转变换;相似三角形的性质;锐角三角函数应用;圆的性质;阅读理解,等.129数学思想涉及:分类讨论;数形结合;转化,等.现选取部分省市的2016年中考题展示,以飨读者.一、与特殊平行四边形性质的有关综合题【题1】(2016成都第28题)如图,在平面直角坐标系xOy中,抛物线y=a(x+1)23与x轴交于A,B两点(点A在点B的左侧),与y轴交于点
2、C(0,),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧(1)求a的值及点A,B的坐标;(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由【考点】二次函数综合题【分析】(1)把点C代入抛物线解析式即可求出a,令y=0,列方程即可求出点A、B坐标(2)先求出四边形ABCD面积,分两种情形:当直线l边AD相交与点M1时,根据S=10=3,求出点M1坐标即可解决问题当直线l边BC相交与
3、点M2时,同理可得点M2坐标(3)设P(x1,y1)、Q(x2,y2)且过点H(1,0)的直线PQ的解析式为y=kx+b,得到b=k,利用方程组求出点M坐标,求出直线DN解析式,再利用方程组求出点N坐标,列出方程求出k,即可解决问题【解答】解:(1)抛物线与y轴交于点C(0,)a3=,解得:a=,y=(x+1)23当y=0时,有(x+1)23=0,x1=2,x2=4,A(4,0),B(2,0)(2)A(4,0),B(2,0),C(0,),D(1,3)S四边形ABCD=SADH+S梯形OCDH+SBOC=33+(+3)1+2=10从面积分析知,直线l只能与边AD或BC相交,所以有两种情况:当直线
4、l边AD相交与点M1时,则S=10=3,3(y)=3y=2,点M1(2,2),过点H(1,0)和M1(2,2)的直线l的解析式为y=2x+2当直线l边BC相交与点M2时,同理可得点M2(,2),过点H(1,0)和M2(,2)的直线l的解析式为y=x综上所述:直线l的函数表达式为y=2x+2或y=x(3)设P(x1,y1)、Q(x2,y2)且过点H(1,0)的直线PQ的解析式为y=kx+b,k+b=0,b=k,y=kx+k由,+(k)xk=0,x1+x2=2+3k,y1+y2=kx1+k+kx2+k=3k2,点M是线段PQ的中点,由中点坐标公式的点M(k1, k2)假设存在这样的N点如图,直线D
5、NPQ,设直线DN的解析式为y=kx+k3由,解得:x1=1,x2=3k1,N(3k1,3k23)四边形DMPN是菱形,DN=DM,(3k)2+(3k2)2=()2+()2, 整理得:3k4k24=0,k2+10,3k24=0, 解得k=,k0,k=,P(31,6),M(1,2),N(21,1)PM=DN=2,PMDN,四边形DMPN是平行四边形,DM=DN,四边形DMPN为菱形,以DP为对角线的四边形DMPN能成为菱形,此时点N的坐标为(21,1)【题2】(2016泰安第28题)如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点
6、E、B(1)求二次函数y=ax2+bx+c的表达式;(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行与y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标【考点】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值【分析】(1)设出抛物线解析式,用待定系数法求解即可;(2)先求出直线AB解析式,设出点P坐标(x,x2+
7、4x+5),建立函数关系式S四边形APCD=2x2+10x,根据二次函数求出极值;(3)先判断出HMNAOE,求出M点的横坐标,从而求出点M,N的坐标【解答】解:(1)设抛物线解析式为y=a(x2)2+9,抛物线与y轴交于点A(0,5),4a+9=5,a=1,y=(x2)2+9=x2+4x+5,(2)当y=0时,x2+4x+5=0,x1=1,x2=5,E(1,0),B(5,0),设直线AB的解析式为y=mx+n,A(0,5),B(5,0),m=1,n=5,直线AB的解析式为y=x+5;设P(x,x2+4x+5),D(x,x+5),PD=x2+4x+5+x5=x2+5x,AC=4,S四边形APC
8、D=ACPD=2(x2+5x)=2x2+10x,当x=时,S四边形APCD最大=,(3)如图,过M作MH垂直于对称轴,垂足为H,MNAE,MN=AE,HMNAOE,HM=OE=1,M点的横坐标为x=3或x=1,当x=1时,M点纵坐标为8,当x=3时,M点纵坐标为8,M点的坐标为M1(1,8)或M2(3,8),A(0,5),E(1,0),直线AE解析式为y=5x+5,MNAE,MN的解析式为y=5x+b,点N在抛物线对称轴x=2上,N(2,10+b),AE2=OA2+0E2=26MN=AEMN2=AE2,MN2=(21)2+8(10+b)2=1+(b+2)2M点的坐标为M1(1,8)或M2(3,
9、8),点M1,M2关于抛物线对称轴x=2对称,点N在抛物线对称轴上,M1N=M2N,1+(b+2)2=26,b=3,或b=7,10+b=13或10+b=3当M点的坐标为(1,8)时,N点坐标为(2,13),当M点的坐标为(3,8)时,N点坐标为(2,3),【点评】此题是二次函数综合题,主要考查了待定系数法求函数关系式,函数极值额确定方法,平行四边形的性质和判定,解本题的关键是建立函数关系式求极值【题2】(2016东营第25题)参考答案:【题3】(2016扬州第28题)如图1,二次函数的图像过点A(-1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图像上,点Q
10、在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数(k0)的图像与该二次函数的图像交于O、C两点,点T为该二次函数图像上位于直线OC下方的动点,过点T作直线TMOC,垂足为点M,且M在线段OC上(不与O、C重合),过点T作直线TNy轴交OC于点N。若在点T运动的过程中,为常数,试确定k的值。 参考答案:(1) (2)P()或P() (3)k=二、与轴对称和等腰三角形性质有关的综合题【题4】(2016益阳第21题)如图,顶点为的抛物线经过坐标原点O,与轴交于点B(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交轴于点C,交抛物线于点,求证:
11、OCDOAB;(3)在轴上找一点,使得PCD的周长最小,求出P点的坐标考点:考查二次函数,三角形的全等、三角形的相似。解析:(1)抛物线顶点为, 设抛物线对应的二次函数的表达式为, 将原点坐标(0,0)代入表达式,得 抛物线对应的二次函数的表达式为: (2)将 代入中,得B点坐标为:, 设直线OA对应的一次函数的表达式为, 将代入表达式中,得, 直线OA对应的一次函数的表达式为BDAO,设直线BD对应的一次函数的表达式为,将B代入中,得 ,直线BD对应的一次函数的表达式为由得交点D的坐标为,将代入中,得C点的坐标为,由勾股定理,得:OA=2=OC,AB=2=CD, 在OAB与OCD中, OAB
12、OCD(3)点关于轴的对称点的坐标为,则与轴的交点即为点,它使得PCD的周长最小过点D作DQ,垂足为Q,则PODQ,即, 点的坐标为【题5】(2016哈尔滨第27题)如图,二次函数yax 2bx(a0)的图象经过点A(1,4),对称轴是直线x ,线段AD平行于x轴,交抛物线于点D在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD (1)求该二次函数的解析式;(2)设点F是BD的中点,点P是线段DO上的动点,将BPF沿边PF翻折,得到BPF,使BPF与DPF重叠部分的面积是BDP的面积的 ,若点B在OD上方,求线段PD的长度;xyADCBOxyADCBOxyADCBO
13、(3)在(2)的条件下,过B作BHPF于H,点Q在OD下方的抛物线上,连接AQ与BH交于点M,点G在线段AM上,使HPN+DAQ =135,延长PG交AD于N若AN+ BM=,求点Q的坐标参考答案:(1)() A(1,4)C(0,2),B(-2,-2)D(-4,4)BD,由条件得P是PD的中点,四边形BFBP是菱形,PB=P在上,P(-1,1)PD=【题6】(2016临沂第26题)如图,在平面直角坐标系中,直线y=2x+10与x轴、y轴相交于A、B两点.点C的坐标是(8,4),连接AC、BC.(1)求过O、A、C三点的抛物线的解析式,并判断ABC的形状;(2)动点P从点O出发,沿OB以每秒2个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2016 年中 数学 分类 汇编 二次 函数 压轴 30
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内