单项桥式全控整流电路(纯电阻)(共30页).doc
《单项桥式全控整流电路(纯电阻)(共30页).doc》由会员分享,可在线阅读,更多相关《单项桥式全控整流电路(纯电阻)(共30页).doc(30页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 单项桥式全控整流电路(纯电阻)系 、 部: 学生姓名: 指导教师: 职称 专 业: 班 级: 完成时间: 第一章 绪论电子技术是根据电子学的原理,运用电子器件设计和制造某种特定功能的电路以解决实际问题的科学,包括信息电子技术和电力电子技术两大分支。信息电子技术包括 Analog (模拟) 电子技术和 Digital (数字) 电子技术。电子技术是对电子信号进行处理的技术,处理的方式主要有:信号的发生、放大、滤波、转换。现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末
2、六十年代初的硅整 电子产品流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。 整流器时代大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,
3、因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。 逆变器时代七十年代出现了世界范围的能源危机,交流电机变频调速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频
4、范围内。 变频器时代进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的
5、频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础第二章 课程设计方案的选择2.1整流电路 单相相控整流电路可分为单相半波、单相全波和单相桥式相控流电路,它们所连接的负载性质不同就会有不同的特点。而负载性质又分为带电阻性负载、电阻-电感性负载和反电动势负载时的工作情况。单相桥式全控整流电路(电阻-电感性负载)电路简图如下:图2.1此电路对每个导电回路进行控制,与单相桥式半控整流电路相比,无须用续流二极管,也不会失控现象,负载形式多样,整流效果好,波形平稳,应用广泛。变压器二次绕组中,正负两个半周电流方
6、向相反且波形对称,平均值为零,即直流分量为零,不存在变压器直流磁化问题,变压器的利用率也高。单相全控桥式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。 单相全控桥式整流电路其输出平均电压是半波整流电路2倍,在相同的负载下流过晶闸管的平均电流减小一半,且功率因数提高了一半。根据以上的分析,我选择的方案为单相全控桥式整流电路(负载为电阻-电感性负载)。2.2.1晶闸管晶管又称为晶体闸流管,可控硅整流(Silicon Controlled Rectifier-SCR),开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20世纪80
7、年代以来,开始被性能更好的全控型器件取代。能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz以下)装置中的主要器件。晶闸管往往专指晶闸管的一种基本类型-普通晶闸管。广义上讲,晶闸管还包括其许多类型的派生器件。 1)晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。引出阳极A、阴极K和门极(或称栅极)G三个联接端。内部结构:四层三个结如图2.22)晶闸管的工作原理图晶闸管由四层半导体(P1、N1、P2、N2)组成,形成三个结J1(P1N1)、J2(N1P2)、J3(P2N2),并分别从P1、P2、N2引入A
8、、G、K三个电极,如图1.2(左)所示。由于具有扩散工艺,具有三结四层结构的普通晶闸管可以等效成如图2.3(右)所示的两个晶闸管T1(P1-N1-P2)和(N1-P2-N2)组成的等效电路。 图2.2晶闸管的外形、内部结构、电气图形符号和模块外形a)晶闸管外形 b)内部结构 c)电气图形符号 d)模块外形图2.3 晶闸管的内部结构和等效电路3)晶闸管的门极触发条件(1): 晶闸管承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通; (2):晶闸管承受正向电压时,仅在门极有触发电流的情况下晶闸管才能导通;(3):晶闸管一旦导通门极就失去控制作用;(4):要使晶闸管关断,只能使其电流小到零一
9、下。晶闸管的驱动过程更多的是称为触发,产生注入门极的触发电流的电路称为门极触发电路。也正是由于能过门极只能控制其开通,不能控制其关断,晶闸管才被称为半控型器件。只有门极触发是最精确、迅速而可靠的控制手段。2.2.2 可关断晶闸管可关断晶闸管简称GTO1) 可关断晶闸管的工作原理图2.4 GTO的结构、等效电路和图形符号GTO的导通机理与SCR是完全一样的。 GTO一旦导通之后,门极信号是可以撤除的,在制作时采用特殊的工艺使管子导通后处于临界饱和,而不像普通晶闸管那样处于深饱和状态,这样可以用门极负脉冲电流破坏临界饱和状态使其关断。 GTO在关断机理上与SCR是不同的。门极加负脉冲即从门极抽出电
10、流(即抽出饱和导通时储存的大量载流子),强烈正反馈使器件退出饱和而关断。第三章 电路原理图设计3.1 主电路原理图设计 单项桥式全控整流电路带电阻性负载电路如图(1):图3.1单项桥式全控整流电路带电阻性负载电路在单项桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3 组成另一对桥臂。在u2正半周(即a点电位高于b点电位),若4个晶闸管均不导通,负载电流id为零,ud也为零,VT1、VT4串联承受电压u2,设VT1和VT4的漏电阻相等,则各承受u2的一半。若在触发角处给VT1和VT4加触发脉冲,VT1、VT4即导通,电流从a端经VT1、R、VT4流回电源b端。当u2为零时,流
11、经晶闸管的电流也降到零,VT1和VT4关断。在u2负半周,仍在触发延迟角处触发VT2和VT3(VT2和VT3的=0处为t=),VT2和VT3导通,电流从电源的b端流出,经VT3、R、VT2流回电源a端。到u2过零时,电流又降为零,VT2和VT3关断。此后又是VT1和VT4导通,如此循环的工作下去,整流电压ud和晶闸管VT1、VT4两端的电压波形如下图(2)所示。晶闸管承受的最大正向电压和反向电压分别为U2和U2。pwtwtwt000i2udidb)c)d)u(i)ddaauVT1,4图3.2单项桥式全控整流电路带电阻负载时的波形3.1.2 工作原理 第1阶段(0t1):这阶段u2在正半周期,a
12、点电位高于b点电位晶闸管VT1和VT2方向串联后于u2连接,VT1承受正向电压为u2/2,VT2承受u2/2的反向电压;同样VT3和VT4反向串联后与u2连接,VT3承受u2/2的正向电压,VT4承受u2/2的反向电压。虽然VT1和VT3受正向电压,但是尚未触发导通,负载没有电流通过,所以Ud=0,id=0。 第2阶段(t1 ):在t1 时同时触发VT1和VT3,由于VT1和VT3受正向电压而导通,有电流经a点VT1RVT3变压器b点形成回路。在这段区间里,ud=u2,id=iVT1=iVT3=ud/R。由于VT1和VT3导通,忽略管压降,uVT1=uVT2=0,而承受的电压为uVT2=uVT
13、4=u2。 第3阶段(t2 ):从t=开始u2进入了负半周期,b点电位高于a点电位,VT1和VT3由于受反向电压而关断,这时VT1VT4都不导通,各晶闸管承受u2/2的电压,但VT1和VT3承受的事反向电压,VT2和VT4承受的是正向电压,负载没有电流通过,ud=0,id=i2=0。 第4阶段(t2 ):在t2 时,u2电压为负,VT2和VT4受正向电压,触发VT2和VT4导通,有电流经过b点VT2RVT4a点,在这段区间里,ud=u2,id=iVT2=iVT4=i2=ud/R。由于VT2和VT4导通,VT2和VT4承受u2的负半周期电压,至此一个周期工作完毕,下一个周期,充复上述过程,单项桥
14、式整流电路两次脉冲间隔为180。1.3 参数计算整流电压平均值: (2-1) 角的移相范围为00-1800。向负载输出的平均电流值为:(2-2)流过晶闸管的电流平均值只有输出直流平均值的一半(因为一个周期内每个晶闸管只有半个周期导通),即 (2-3) 3.2保护电路原理图设计3.2.1过电流电路设计 电力电子电路运行不正常或发生故障时,可能会发生过电流。过电流分过载和短路两种情况。短路保护的特点是整定电流大、瞬时动作。电磁式电流脱扣器(或继电器)、熔断器常用作短路保护元件。过载保护的特点是整定电流较小、反时限动作。热继电器、延时型电磁式电流继电器常用作过载保护元件。过电流保护电路如图(3)所示
15、。 图3.3 过电流保护电路M57962L通过检测IGBT的饱和压降来判断IGBT是否过流,一旦过流,M57962L将对IGBT实施软关断,并输出过流故障信号。3.2.2三菱驱动模块M57962L简介在我们的过流保护装置中,使用了日本三菱公司的驱动模块M57962L。M57962L是N沟道大功率IGBT模块的驱动电路,能驱动600V/400A和1200V/400A的IGBT,M57962L的原理方框图如图1所示,它有以下几个特点:(1)采用光耦实现电气隔离,光耦是快速型的,适合20kHz左右的高频开关运行,光耦的原边已串联限流电阻(约185),可将5V的电压直接加到输入侧;图3.4 ML的原理
16、框图(2)如果采用双电源驱动技术,使输出负栅压比较高。电源电压的极限值为18V/15V,一般取15V/10V;(3)信号传输延迟时间短,低电平高电平的传输延迟时间以及高电平低电平的传输延迟时间都在1.5s以下;3.2过电压保护电路设计电力电子装置中可能发生的过电压分为外因过电压和内因过电压两类。外因过电压主要来自雷击过电压和系统中的操作过程中等外因部分。内因过电压主要来自电力电子装置内部器件的开关过程,比如换相过电压,关断过电压。过电压保护电路如图(5)所示。图3.5 RC过电压保护电路利用电容两端电压不能突变的特性来限制电压上升率。因为电路总是存在电感的(变压器漏感或负载电感),所以与电容C
17、串联电阻R可起阻尼作用,它可以防止R、L、C电路在过渡过程中,因振荡在电容器两端出现的过电压损坏晶闸管。同时,避免电容器通过晶闸管放电电流过大,造成过电流而损坏晶闸管。3.3 触发电路设计电力电子器件驱动电路概述驱动电路主电路与控制电路之间的接口使电力电子器件工作在较理想的开关状态,缩短开关时间,减小开关损耗,对装置的运行效率、可靠性和安全性都有重要的意义对器件或整个装置的一些保护措施也往往设在驱动电路中,或通过驱动电路实现驱动电路的基本任务:将信息电子电路传来的信号按控制目标的要求,转换为加在电力电子器件控制端和公共端之间,可以使其开通或关断的信号对半控型器件只需提供开通控制信号对全控型器件
18、则既要提供开通控制信号,又要提供关断控制信号驱动电路还要提供控制电路与主电路之间的电气隔离环节,一般采用光隔离或磁隔离光隔离一般采用光耦合器磁隔离的元件通常是脉冲变压器晶闸管的触发电路作用:产生符合要求的门极触发脉冲,保证晶闸管在需要的时刻由阻断转为导通广义上讲,还包括对其触发时刻进行控制的相位控制电路晶闸管触发电路应满足下列要求:触发脉冲的宽度应保证晶闸管可靠导通(结合擎住电流的概念)触发脉冲应有足够的幅度不超过门极电压、电流和功率定额,且在可靠触发区域之内应有良好的抗干扰性能、温度稳定性及与主电路的电气隔离专心-专注-专业图3.6理想的晶闸管触发脉冲电流波形t1t2脉冲前沿上升时间(1ms
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 单项 桥式全控 整流 电路 电阻 30
限制150内