中考数学几何题总汇(共90页).doc
《中考数学几何题总汇(共90页).doc》由会员分享,可在线阅读,更多相关《中考数学几何题总汇(共90页).doc(90页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上三角形知识考点:理解三角形三边的关系及三角形的主要线段(中线、高线、角平分线)和三角形的内角和定理。关键是正确理解有关概念,学会概念和定理的运用。应用方程知识求解几何题是这部分知识常用的方法。精典例题:【例1】已知一个三角形中两条边的长分别是、,且,那么这个三角形的周长的取值范围是( )A、 B、C、 D、分析:涉及构成三角形三边关系问题时,一定要同时考虑第三边大于两边之差且小于两边之和。答案:B变式与思考:在ABC中,AC5,中线AD7,则AB边的取值范围是( )A、1AB29 B、4AB24 C、5AB19 D、9AB19评注:在解三角形的有关中线问题时,如果不能
2、直接求解,则常将中线延长一倍,借助全等三角形知识求解,这也是一种常见的作辅助线的方法。【例2】如图,已知ABC中,ABC450,ACB610,延长BC至E,使CEAC,延长CB至D,使DBAB,求DAE的度数。分析:用三角形内角和定理和外角定理,等腰三角形性质,求出DE的度数,即可求得DAE的度数。略解:ABDB,ACCE DABC,EACB DE(ABCACB)530 DAE1800(DE)1270探索与创新:【问题一】如图,已知点A在直线外,点B、C在直线上。(1)点P是ABC内任一点,求证:PA;(2)试判断在ABC外,又和点A在直线的同侧,是否存在一点Q,使BQCA,并证明你的结论。
3、分析与结论:(1)连结AP,易证明PA;(2)存在,怎样的角与A相等呢?利用同弧上的圆周角相等,可考虑构造ABC的外接O,易知弦BC所对且顶点在弧AB,和弧AC上的圆周角都与A相等,因此点Q应在弓形AB和AC内,利用圆的有关性质易证明(证明略)。【问题二】如图,已知P是等边ABC的BC边上任意一点,过P点分别作AB、AC的垂线PE、PD,垂足为E、D。问:AED的周长与四边形EBCD的周长之间的关系?分析与结论:(1)DE是AED与四边形EBCD的公共边,只须证明ADAEBEBCCD(2)既有等边三角形的条件,就有600的角可以利用;又有垂线,可造成含300角的直角三角形,故本题可借助特殊三角
4、形的边角关系来证明。略解:在等边ABC中,BC600 又PEAB于E,PDAC于D BPECPD300 不妨设等边ABC的边长为1,BE,CD,那么:BP,PC,而AE,AD AEAD 又BECDBC ADAEBEBCCD 从而ADAEDEBEBCCDDE 即AED的周长等于四边形EBCD的周长。 评注:本题若不认真分析三角形的边角关系,而想走“全等三角形”的道路是很难奏效的。跟踪训练:一、填空题:1、三角形的三边为1,9,则的取值范围是 。2、已知三角形两边的长分别为1和2,如果第三边的长也是整数,那么第三边的长为 。3、在ABC中,若C2(AB),则C 度。4、如果ABC的一个外角等于15
5、00,且BC,则A 。5、如果ABC中,ACB900,CD是AB边上的高,则与A相等的角是 。6、如图,在ABC中,A800,ABC和ACB的外角平分线相交于点D,那么BDC 。7、如图,CE平分ACB,且CEDB,DABDBA,AC18cm,CBD的周长为28 cm,则DB 。8、纸片ABC中,A650,B750,将纸片的一角折叠,使点C落在ABC内(如图),若1200,则2的度数为 。9、在ABC中,A500,高BE、CF交于点O,则BOC 。10、若ABC的三边分别为、,要使整式,则整数应为 。 二、选择题:1、若ABC的三边之长都是整数,周长小于10,则这样的三角形共有( )A、6个
6、B、7个 C、8个 D、9个2、在ABC中,ABAC,D在AC上,且BDBCAD,则A的度数为( )A、300 B、360 C、450 D、7203、等腰三角形一腰上的中线分周长为15和12两部分,则此三角形底边之长为( )A、7 B、11 C、7或11 D、不能确定4、在ABC中,B500,ABAC,则A的取值范围是( )A、00A1800 B、00A800C、500A1300 D、800A13005、若、是三角形的三个内角,而,那么、中,锐角的个数的错误判断是( ) A、可能没有锐角 B、可能有一个锐角C、可能有两个锐角 D、最多一个锐角6、如果三角形的一个外角等于它相邻内角的2倍,且等于
7、它不相邻内角的4倍,那么这个三角形一定是( ) A、锐角三角形 B、直角三角形 C、钝角三角形 D、正三角形三、解答题:1、有5根木条,其长度分别为4,8,8,10,12,用其中三根可以组成几种不同形状的三角形?2、长为2,3,5的线段,分别延伸相同长度的线段后,能否组成三角形?若能,它能构成直角三角形吗?为什么?3、如图,在ABC中,A960,延长BC到D,ABC与ACD的平分线相交于,BC与CD的平分线相交于,依此类推,BC与CD的平分线相交于,则的大小是多少?4、如图,已知OA,P是射线ON上一动点(即P可在射线ON上运动),AON600,填空:(1)当OP 时,AOP为等边三角形;(2
8、)当OP 时,AOP为直角三角形;(3)当OP满足 时,AOP为锐角三角形;(4)当OP满足 时,AOP为钝角三角形。 一、填空题:1、;2、2;3、1200;4、300或1200;5、DCB;6、500;7、8cm;8、600;9、1300;10、偶数。二、选择题:CBCBCB三、解答题:1、6种(4、8、8;4、8、10;8、8、10;8、8、12;8、10、12、4、10、12)2、可以,设延伸部分为,则长为,的三条线段中,最长, 只要,长为,的三条线段可以组成三角形 设长为的线段所对的角为,则为ABC的最大角 又由 当,即时,ABC为直角三角形。3、304、(1);(2)或;(3)OP
9、;(4)0OP或OP2.全等三角形知识考点:掌握用三角形全等的判定定理来解决有关的证明和计算问题,灵活运用三角形全等的三个判定定理来证明三角形全等。精典例题:【例1】如图,已知ABBC,DCBC,E在BC上,AEAD,ABBC。求证:CECD。分析:作AFCD的延长线(证明略)评注:寻求全等的条件,在证明两条线段(或两个角)相等时,若它们所在的两个三角形不全等,就必须添加辅助线,构造全等三角形,常见辅助线有:连结某两个已知点;过已知点作某已知直线的平行线;延长某已知线段到某个点,或与已知直线相交;作一角等于已知角。 【例2】如图,已知在ABC中,C2B,12,求证:ABACCD。分析:采用截长
10、补短法,延长AC至E,使AEAB,连结DE;也可在AB上截取AEAC,再证明EBCD(证明略)。探索与创新:【问题一】阅读下题:如图,P是ABC中BC边上一点,E是AP上的一点,若EBEC,12,求证:APBC。证明:在ABE和ACE中,EBEC,AEAE,12 ABEACE(第一步) ABAC,34(第二步) APBC(等腰三角形三线合一)上面的证明过程是否正确?若正确,请写出每一步的推理依据;若不正确,请指出关键错在哪一步,并写出你认为正确的证明过程。略解:不正确,错在第一步。正确证法为:BECEEBCECB 又12ABCACB,ABACABEACE(SAS)34 又ABACAPBC评注:
11、本题是以考查学生练习中常见错误为阅读材料设计而成的阅读性试题,其目的是考查学生阅读理解能力,证明过程中逻辑推理的严密性。阅读理解题是近几年各地都有的新题型,应引起重视。【问题二】众所周知,只有两边和一角对应相等的两个三角形不一定全等,你能想办法安排和外理这三个条件,使这两个三角形全等吗?请同学们参照下面的方案(1)导出方案(2)(3)(4)。解:设有两边和一角对应相等的两个三角形,方案(1):若这个角的对边恰好是这两边中的大边,则这两个三角形全等。方案(2):若这个角是直角,则这两个三角形全等。方案(3):若此角为已知两边的夹角,则这两个三角形全等。评注:这是一道典型的开放性试题,答案不是唯一
12、的。如方案(4):若此角为钝角,则这两个三角形全等。(5):若这两个三角形都是锐解(钝角)三角形,则这两个三角形全等。能有效考查学生对三角形全等概念的掌握情况,这类题目要求学生依据问题提供的题设条件,寻找多种途径解决问题。本题要求学生着眼于弱化题设条件,设计让命题在一般情况不成立,而特殊情况下成立的思路。跟踪训练:一、填空题:1、若ABCEFG,且B600,FGEE560,则A 度。2、如图,ABEFDC,ABC900,ABDC,那么图中有全等三角形 对。3、如图,在ABC中,C900,BC40,AD是BAC的平分线交BC于D,且DCDB35,则点D到AB的距离是 。 4、如图,在ABC中,A
13、DBC,CEAB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件: ,使AEHCEB。5、如图,把一张矩形纸片ABCD沿BD对折,使C点落在E处,BE与AD相交于点O,写出一组相等的线段 (不包括ABCD和ADBC)。6、如图,EF900,BC,AEAF。给出下列结论:12;BECF;ACNABM;CDDN。其中正确的结论是 (填序号)。二、选择题:1、如图,ADAB,EAAC,AEAD,ABAC,则下列结论中正确的是( ) A、ADFAEG B、ABEACDC、BMFCNG D、ADCABE 2、如图,AEAF,ABAC,EC与BF交于点O,A600,B250,则EOB的度数为
14、( ) A、600 B、700 C、750 D、8503、如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( ) A、相等 B、不相等 C、互余 D、互补或相等 4、如图,在ABC中,AD是A的外角平分线,P是AD上异于A的任意一点,设PB,PC,AB,AC,则与的大小关系是( ) A、 B、C、 D、无法确定三、解答题:1、如图,12,34,ECAD。求证:ABE和BDC是等腰三角形。 2、如图,ABAE,ABCAED,BCED,点F是CD的中点。(1)求证:AFCD;(2)在你连结BE后,还能得出什么新结论?请再写出两个。3、(1)已知,在ABC和DEF中
15、,ABDE,BCEF,BACEDF1000,求证:ABCDEF;(2)上问中,若将条件改为ABDE,BCEF,BACEDF700,结论是否还成立,为什么?4、如图,已知MON的边OM上有两点A、B,边ON上有两点C、D,且ABCD,P为MON的平分线上一点。问:(1)ABP与PCD是否全等?请说明理由。(2)ABP与PCD的面积是否相等?请说明理由。 5、如图,已知CEAB,DFAB,点E、F分别为垂足,且ACBD。(1)根据所给条件,指出ACE和BDF具有什么关系?请你对结论予以证明。(2)若ACE和BDF不全等,请你补充一个条件,使得两个三角形全等,并给予证明。参考答案一、填空题:1、32
16、;2、3;3、15;4、AHBC或EAEC或EHEB等;5、DCDE或BCBE或OAOE等;6、二、选择题:BBDA三、解答题:1、略;2、(1)略;(2)AFBE,AF平分BE等;3、(1)略;(2)不成立,举一反例即能说明;4、(1)不一定全等,因ABP与PCD中,只有ABCD,而其它角和边都有可能不相等,故两三角形不一定全等。(2)面积相等,因为OP为MON平分线上一点,故P到边AB、CD上的距离相等,即ABP中AB边上的高与PCD中CD边上的高相等,又根据ABCD(即底边也相等)从而ABP与PCD的面积相等。5、(1)ACE和BDF的对应角相等;(2)略4.直角三角形、勾股定理、面积知
17、识考点:了解直角三角形的判定与性质,理解直角三角形的边角关系,掌握用勾股定理解某些简单的实际问题。它的有关性质广泛应用于线段计算、证明线段倍分关系、证明线段平方关系及与面积有关的问题等方面。精典例题:【例1】如图,在四边形ABCD中,A600,BD900,BC2,CD3,则AB?分析:通过作辅助线,将四边形问题转化为三角形问题来解决,其关键是对内分割还是向外补形。答案: 【例2】如图,P为ABC边BC上一点,PC2PB,已知ABC450,APC600,求ACB的度数。分析:本题不能简单地由角的关系推出ACB的度数,而应综合运用条件PC2PB及APC600来构造出含300角的直角三角形。这是解本
18、题的关键。答案:ACB750(提示:过C作CQAP于Q,连结BQ,则AQBQCQ)探索与创新:【问题一】如图,公路MN和公路PQ在点P处交汇,且QPN300,点A处有一所中学,AP160米,假设汽车行驶时,周围100米以内会受到噪声的影响,那么汽车在公路MN上沿PN方向行驶时,学校是否会受到噪声的影响?如果受影响,已知汽车的速度为18千米小时,那么学校受影响的时间为多少秒?分析:从学校(A点)距离公路(MN)的最近距离(AD80米)入手,在距A点方圆100米的范围内,利用图形,根据勾股定理和垂径定理解决它。略解:作ADMN于D,在RtADP中,易知AD80。所以这所学校会受到噪声的影响。以A为
19、圆心,100米为半径作圆交MN于E、F,连结AE、AF,则AEAF100,根据勾股定理和垂径定理知:EDFD60,EF120,从而学校受噪声影响的时间为:(小时)24(秒)评注:本题是一道存在性探索题,通过给定的条件,判断所研究的对象是否存在。 【问题二】台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力如图12,据气象观测,距沿海某城市A的正南方向220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米时的速度沿北偏东300方向往C移动,且台风中心风力不变。若城市所受风力达到或超过四级,则称为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中考 数学 几何 总汇 90
限制150内