二次函数的交点式(共4页).doc
《二次函数的交点式(共4页).doc》由会员分享,可在线阅读,更多相关《二次函数的交点式(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上二次函数之交点式【课前自习】1.根据二次函数的图象和性质填表:二 次 函 数对 称 轴 顶 点与坐标轴交点一般式与轴交与点( )顶点式2.用十字相乘法分解因式: 3.若一元二次方程有两实数根,则抛物线与轴交点坐标是 . 【课堂学习】一、探索归纳:1.根据课前自习第3题的结果,改写下列二次函数: 2.求出上述抛物线与轴的交点坐标: 坐标: 3.你发现什么?4.归纳: 若二次函数与轴交点坐标是()、(),则该函数还可以表示为 的形式;反之若二次函数是的形式,则该抛物线与轴的交点坐标是 ,故我们把这种形式的二次函数关系式称为 式.二次函数的图象与轴有2个交点的前提条件是 ,
2、因此这也是 式存在的前提条件.练习.把下列二次函数改写成交点式,并写出它与坐标轴的交点坐标. 与轴的交点坐标是: 与轴的交点坐标是: 二、典型例题:例1.已知二次函数的图象与轴的交点坐标是(3,0),(1,0),且函数的最值是3.求对称轴和顶点坐标.在下列平面直角坐标系中画出它的简图. 求出该二次函数的关系式.若二次函数的图象与轴的交点坐标是(3,0),(-1,0),则对称轴是 ; 若二次函数的图象与轴的交点坐标是(-3,0),(1,0),则对称轴是 ;若二次函数的图象与轴的交点坐标是(-3,0),(-1,0),则对称轴是 .归纳:若抛物线与轴的交点坐标是()、()则,对称轴是 ,顶点 坐标是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 二次 函数 交点
限制150内