《第11章稳恒电流与真空中的恒定磁场习题解答和分析(共16页).doc》由会员分享,可在线阅读,更多相关《第11章稳恒电流与真空中的恒定磁场习题解答和分析(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十一章 电流与磁场11-1 电源中的非静电力与静电力有什么不同?答:在电路中,电源中非静电力的作用是,迫使正电荷经过电源内部由低电位的电源负极移动到高电位的电源正极,使两极间维持一电位差。而静电场的作用是在外电路中把正电荷由高电位的地方移动到低电位的地方,起到推动电流的作用;在电源内部正好相反,静电场起的是抵制电流的作用。 电源中存在的电场有两种:1、非静电起源的场;2、稳恒场。把这两种场与静电场比较,静电场由静止电荷所激发,它不随时间的变化而变化。非静电场不由静止电荷产生,它的大小决定于单位正电荷所受的非静电力,。当然电源种类不同,的起因也不同。11-2静电场与恒
2、定电场相同处和不同处?为什么恒定电场中仍可应用电势概念?答:稳恒电场与静电场有相同之处,即是它们都不随时间的变化而变化,基本规律相同,并且都是位场。但稳恒电场由分布不随时间变化的电荷产生,电荷本身却在移动。正因为建立稳恒电场的电荷分布不随时间变化,因此静电场的两条基本定理,即高斯定理和环路定理仍然适用,所以仍可引入电势的概念。11-3一根铜导线表面涂以银层,当两端加上电压后,在铜线和银层中,电场强度是否相同?电流密度是否相同?电流强度是否相同?为什么? 答:此题涉及知识点:电流强度,电流密度概念,电场强度概念,欧姆定律的微分形式。设铜线材料横截面均匀,银层的材料和厚度也均匀。由于加在两者上的电
3、压相同,两者的长度又相等,故铜线和银层的场强相同。由于铜线和银层的电导率不同,根据知,它们中的电流密度不相同。电流强度,铜线和银层的不同但相差不太大,而它们的横截面积一般相差较大,所以通过两者的电流强度,一般说来是不相同的。11-4一束质子发生侧向偏转,造成这个偏转的原因可否是:(1)电场?(2)磁场?(3)若是电场和磁场在起作用,如何判断是哪一种场?答:造成这个偏转的原因可以是电场或磁场。可以改变质子的运动方向,通过质子观察运动轨迹来判断是电场还是磁场在起作用。11-5 三个粒子,当它们通过磁场时沿着如题图115所示的路径运动,对每个粒子可作出什么判断?答:根据带电粒子在磁场中所受的洛伦兹力
4、规律,通过观察运动轨迹的不同可以判断三种粒子是否带电和带电种类。11-6 一长直载流导线如题11-6图所示,沿Oy轴正向放置,在原点O处取一电流元,求该电流元在(a,0,0),(0,a,0),(a,a,0),(a,a,a)各点处的磁感应强度。分析:根据毕奥-萨伐尔定律求解。 题11-5图解:由毕奥-萨伐尔定律原点O处的电流元在(a,0,0)点产生的为:在(0,a,0)点产生的为:题11-6图在(a,a,0)点产生的为:在(a,a,a)点产生的为11-7 用两根彼此平行的长直导线将半径为R的均匀导体圆环联到电源上,如题11-7图所示,b点为切点,求O点的磁感应强度。分析:应用毕奥-萨伐尔定律分别
5、求出载流直导线L1和L2以及导体圆环上并联的大圆弧和小圆弧在O点产生的磁感应强度,再利用磁感应强度的矢量和叠加求解。解:先看导体圆环,由于和并联,设大圆弧有电流,小圆弧有电流,必有:由于圆环材料相同,电阻率相同,截面积S相同,实际电阻与圆环弧的弧长和有关,即:题11-7图则在O点产生的的大小为而在O点产生的的大小为和方向相反,大小相等.即。直导线在O点产生的。直导线在O点产生的,方向垂直纸面向外。则O点总的磁感强度大小为11-8 一载有电流的长导线弯折成如题11-8图所示的形状,CD为1/4圆弧,半径为R,圆心O在AC,EF的延长线上.求O点处磁场的场强。分析:O点的磁感强度为各段载流导线在O
6、点产生磁感强度的矢量和。解:因为O点在AC和EF的延长线上,故AC和EF段对O点的磁场没有贡献。CD段:DE段:O点总磁感应强度为题图11-9方同垂直纸面向外.题11-8图11-9 一无限长薄电流板均匀通有电流,电流板宽为,求在电流板同一平面内距板边为的P点处的磁感应强度。分析:微分无限长薄电流板,对微分电流应用无限长载流直导线产生的磁场公式求解。并将再积分求解总的磁感应强度。注意利用场的对称性。解:在电流板上距P点x处取宽为并平行于电流的无限长窄条,狭条中的电流为在P点处产生的磁感强度为:方向垂直纸面向里。整个电流板上各窄条电流在P点处产生的方向相同,故11-10 在半径的“无限长”半圆柱形
7、金属薄片中,有电流自下而上地通过,如题11-10图所示。试求圆柱轴线上一点P处的磁感应强度。分析:微分半圆柱形金属薄片,对微分电流应用无限长载流直导线产生的磁场公式求解。并将场强矢量分解后再积分求解总的磁感应强度。注意利用场的对称性。 题11-10图 解11-10图解:无限长载流半圆形金属薄片可看成由许多宽为的无限长电流窄条所组成,每根导线上的电流在P点产生的磁场大小为,方向按右手螺旋法则确定,如解11-10图所示。,由于各电流窄条产生的磁场方向各不相同,P点的总磁场应化矢量积分为标量积分,即11-11 在半径为R及r的两圆周之间,有一总匝数为N的均匀密绕平面线圈(如题11-11图)通有电流,
8、求线圈中心(即两圆圆心)处的磁感应强度。分析:微分密绕平面线圈,计算出相应的微分电流,利用载流圆环在其圆心处产生的磁场公式求解。并将矢量再积分求解总的磁感应强度。解:由于载流螺旋线绕得很密,可以将它看成由许多同心的圆电流所组成,在沿径向r到R范围内,单位长度的线圈匝数为任取半径r,宽为dr的电流环,该电流环共有电流为题11-11图该电流环在线圈中心产生的磁感强度大小为圆心处总磁感强度大小方向垂直纸面向外。11-12 如题11-12图所示,在顶角为的圆锥台上密绕以线圈,共N匝,通以电流,绕有线圈部分的上下底半径分别为和.求圆锥顶O处的磁感应强度的大小.分析:微分密绕线圈,计算出相应的微分电流,利
9、用载流圆环在其轴线上产生的磁场公式求解。并将矢量再积分求解总的磁感应强度。解:只要将题11-11中的均匀密绕平面线圈沿通过中心的轴垂直上提,便与本题条件相一致,故解题思路也相似。如解11-12图建立坐标,取半径为r,宽为dr的电流环的密绕线圈,其含有匝数为,通电流为因为,。半径为r的一小匝电流在O点产生的大小为所有电流产生的磁场方向均沿x轴,所以其磁感强度大小为 题11-12图 解11-12图11-13 半径为R的木球上绕有细导线,所绕线圈很紧密,相邻的线圈彼此平行地靠着,以单层盖住半个球面共有N匝,如题11-13图所示。设导线中通有电流,求在球心O处的磁感应强度。分析:考虑线圈沿圆弧均匀分布
10、,微分密绕线圈,计算出相应的微分电流,利用载流圆环在其轴线上产生的磁感应强度公式求解。并将矢量再积分求解总的磁感应强度。解11-13图解:建立如解11-13图所示坐标,轴垂直线圈平面,考虑线圈沿圆弧均匀分布,故在内含有线圈的匝数为线圈中通电流时,中心O点处磁感强度为题11-13图因为 对整个半球积分求得O点总磁感强度为11-14 一个塑料圆盘,半径为R,带电量q均匀分布于表面,圆盘绕通过圆心垂直盘面的轴转动,角速度为.试证明(1)在圆盘中心处的磁感应强度为(2)圆盘的磁偶极矩为分析:均匀带电圆盘以角速度旋转时相当于圆电流,微分带电圆盘,计算出相应的微分电流,利用载流圆环在其圆心处产生的磁场公式
11、求解。并将矢量再积分求解总的磁感应强度。解:(1)在圆盘上取一个半径为、宽为的细圆环,其所带电量为题1115图圆盘转动后相当于圆电流若干个圆电流在圆心产生的磁感强度为(2)细圆环的磁矩为转动圆盘的总磁矩为,方向沿轴向。11-15 已知一均匀磁场的磁感应强度B=2T,方向沿x轴正方向,如题11-15图所示。试求(1)通过图中abcd面的磁通量;(2)通过图中befc面的磁通量;(3)通过图中aefd面的磁通量。分析:应用磁通量概念求解。解:(1)取各面由内向外为法线正方向。则(2)(3)11-16 如题11-16图所示,在长直导线AB内通有电流,有一与之共面的等边三角形CDE,其高为,平行于直导
12、线的一边CE到直导线的距离为。求穿过此三角形线圈的磁通量。分析:由于磁场不均匀,将三角形面积进行微分,应用磁通量概念求出穿过面元的磁通量,然后利用积分求出穿过三角形线圈的磁通量。 题11-16图 解11-16图解:建立如解11-16图所示坐标,取距电流AB为远处的宽为且与AB平行的狭条为面积元则通过等边三角形的磁通量为11-17 一根很长的铜导线,载有电流10A,在导线内部,通过中心线作一平面S,如题图11-17所示。试计算通过导线内1m长的S平面的磁通量。分析:先求出磁场的分布,由于磁场沿径向不均匀,将平面S无穷分割,应用磁通量概念求出穿过面元的磁通量,再利用积分求总磁通量。解:与铜导线轴线
13、相距为r的P点处其磁感强度为题11-17图 (rR,R为导线半径)。于是通过单位长铜导线内平面S的磁通量为11-18 如题11-18图所示的空心柱形导体,柱的内外半径分别为和,导体内载有电流,设电流均匀分布在导体的横截面上。求证导体内部各点()的磁感应强度B由下式给出:分析:应用安培环路定理求解。注意环路中电流的计算,应该是先求出载流导体内电流密度,再求出穿过环路的电流。证明:载流导体内电流密度为由对称性可知,取以轴为圆心,为半径的圆周为积分回路,则由安培环路定理得:从而有:题11-19图如果实心圆柱,此时。题11-18图11-19 有一根很长的同轴电缆,由两个同轴圆筒状导体组成,这两个圆筒状
14、导体的尺寸如题11-19图所示。在这两导体中,有大小相等而方向相反的电流流过。(1)求内圆筒导体内各点()的磁感应强度B;(2)求两导体之间()的B;(3)求外圆筒导体内()的B;(4)求电缆外()各点的B。分析:应用安培环路定理求解。求外圆筒导体内()的B时,注意环路中电流的计算,应该是先求出外圆导体内电流密度,再结合内圆筒的电流,求出穿过环路的电流。解:在电缆的横截面,以截面的轴为圆心,将不同的半径作圆弧并取其为安培积分回路,然后,应用安培环路定理求解,可得离轴不同距离处的磁场分布。(1)当时, ,得B=0;(2)当时,同理可得(3)当时,有得(4)当时,B=0。11-20 题11-20图
15、中所示为一根外半径为的无限长圆柱形导体管,管中空心部分半径为,并与圆柱不同轴.两轴间距离。现有电流密度为的电流沿导体管流动,求空腔内任一点的磁感应强度B。分析:此题属于非对称分布磁场的问题,因而不能直接应用安培环路定理一次性求解,但可用补偿法求解。即将无限长载流圆柱形导体管看作是由半径为的实心载流圆柱体和一根与圆柱轴平行并相距的半径为的反向载流圆柱体叠加而成(它们的场都可以分别直接应用安培环路定理求解)。则空间任一点的场就可视作该两个载流导体产生场的矢量叠加。注意补偿电流的计算时,应该是先求出原来导体内电流密度,按照此电流密度进行补偿。解:如解11-20图所示,设半径为的载流圆柱其电流垂直纸面
16、向外,电流密度为 题11-20图 解11-20图它在空腔中P点产生的场为,其方向如解11-20图所示,由安培环路定理可得;式中为从O点引向P点的矢径。同理可求得半径为的反向载流的小圆柱在P点产生磁场,方向如解11-21图,即;式中为从O点引向P点的矢径。则 式中为从指向的矢量。由于,所以得的方向垂直,而大小为,空腔内的磁场为均匀磁场。11-21 一电子在的匀强磁场中作圆周运动,圆周半径,某时刻电子在A点,速度向上,如题11-21图所示。(1)试画出电子运动的轨道;(2)求电子速度的大小;(3)求电子动能。分析:应用运动电荷在匀强磁场中所受洛伦兹力公式并结合牛顿第二定律求解。解:(1)由洛伦兹力
17、公式:得电子的运动轨迹为由A点出发刚开始向右转弯半径为r的圆形轨道。(2)由:得:(3)题11-22图题11-21图11-22 把2.0keV的一个正电子射入磁感应强度为的均匀磁场内(题11-22图),其速度矢量与成89角,路径成螺旋线,其轴在的方向.试求这螺旋线运动的周期、螺距p和半径。分析:应用洛伦兹力分析带电粒子在均匀磁场中的运动求解。注意分析在的方向和垂直的运动不同特点。解:带电粒子在均匀磁场中运动时,当与成q=89时,其轨迹为螺旋线。则11-23 在霍耳效应实验中,宽1.0cm,长4.0cm,厚的导体,沿长度方向载有3.0A的电流,当磁感应强度B=1.5T的磁场垂直地通过该薄导体时,
18、产生的横向霍耳电压(在宽度两端),试由这些数据求(1)载流子的漂移速度;(2)每立方厘米的载流子数目;(3)假设载流子是电子,试就一给定的电流和磁场方向在图上画出霍耳电压的极性。分析:带电粒子在均匀电场和磁场中运动。利用霍耳效应相关公式求解。解:(1)载流子的漂移速度(2)每立方厘米的载流子数目因为电流密度:所以载流子密度(3)略11-24 某瞬间a点有一质子A以沿题11-24图中所示方向运动。相距远处的b点有另一质子B以沿图示方向运动。在同一平面内,求质子B所受的洛伦兹力的大小和方向。分析:当考察两运动电荷的相互作用时,可从运动电荷B在运动电荷A形成的磁场中运动着手,求得所受磁力的大小和方向
19、。解:质子A以运动经过a点的瞬间在b点产生的磁感强度为,方向垂直纸面向外。质子B以运动,在经过b的同一瞬间受洛伦兹力为方向垂直和组成的平面。11-25 如题11-25图所示,在长直导线旁有一矩形线圈,导线中通有电流,线圈中通有电流。求矩形线圈上受到的合力是多少?已知。分析:应用安培力公式求解载流导线在磁场中所受的安培力。上下两边受力大小相等,方向相反,互相抵消。左右两边在不同大小的均匀磁场中。注意利用右手定则来判断安培力方向。解:根据安培力公式:可知矩形线圈上下两边受力大小相等,方向相反,互相抵消,左右两边受力大小不等,方向相反,且左边受力较大。矩形线圈受合力为题11-26图题11-25图题1
20、1-24图11-26 在长直电流旁有一等腰梯形载流线框ABCD,通有电流,已知BC,AD边的倾斜角为。如题11-26图所示,AB边与平行,AB距为,梯形高b,上、下底分别为c,d长。试求此梯形线框所受的作用力的大小和方向。分析:本题求载流导线在磁场中所受安培力,BC和AD两边受力的大小随位置改变而改变,方向也不在同一直线上,通常采用力的正交分解再合成的办法求解。解:由安培力公式得,方向向左。,方向向右。而BC和AD各电流元受力的大小随位置在改变,方向也不相同。同理得分别将和分解成与AB平行与垂直的分量;显然,二者平行于AB的分量大小相等方向相反而互相抵消,而垂直于AB的分量其方向与相同。故整个
21、梯形载流线圈受力11-27 载有电流的长直导线AB旁有一同平面的导线ab,ab长为9cm,通以电流。求当ab垂直AB,a与垂足O点的距离为1cm时,导线ab所受的力,以及对O点的力矩的大小。分析:本题中各电流元受安培力方向相同,而大小随位置变化(B随位置变化)而变化,故需通过积分求解合力。各电流元受磁力矩方向也相同,大小也随位置变化而变化,导线对O点的磁力矩也需通过积分求解。O1cm题11-27图baBA解:电流ab中任意电流元受力大小为。对O点力矩为11-28 截面积为S,密度为的铜导线,被弯成正方形的三边,可以绕水平轴转动,如题11-28图所示。导线放在方向为竖直向上的匀强磁场中,当导线中
22、的电流为时,导线离开原来的竖直位置偏转一角度为而平衡,求磁感应强度。如。磁感应强度B应为多少?分析:载流线框绕转动,由于没有平动只有转动,仅需考虑线框对轴力矩的平衡,而不需考虑力的平衡。即。磁力矩可用闭合线框受到磁力矩求解。解:设正方形各边长度为,质量为,平衡时重力对轴的力矩载流线框受到磁力矩既可用整个线框受到磁力矩,也可用各导线段受力对轴的合力矩(因为此时以一条边为转轴),即,其大小为题11-28图平衡时有,即11-29 与水平成角的斜面上放一木制圆柱,圆柱的质量为0.25kg,半径为R,长为0.1m.在这圆柱上,顺着圆柱缠绕10匝的导线,而这个圆柱体的轴线位于导线回路的平面内,如题11-2
23、9图所示.斜面处于均匀磁场中,磁感应强度的大小为0.5T,其方向沿竖直朝上.如果绕线的平面与斜面平行,问通过回路的电流至少要有多大,圆柱体才不致沿斜面向下滚动?题11-29图分析:本题属力电综合题。一方面,圆柱体受重力矩作用要沿斜面向下滚动;另一方面,处于圆柱体轴线平面内的载流线圈(线圈不产生重力矩)要受磁力矩作用而阻止圆柱体向下滚动。当时,圆柱体保持平衡不再滚动。解:假设摩擦力足够大,圆柱体只有滚动无滑动。圆柱体绕瞬时轴转动受到的重力矩。线圈受到的磁力矩.当时圆柱不下滚.得11-30 一个绕有N匝的圆线圈,半径为,载有电流。试问:为了把这个线圈在外磁场中由等于零的位置,旋转到等于90的位置,需对线圈作多少功?是线圈的面法线与磁感应强度之间的夹角。假设分析:此题为磁力作功公式的应用。解:磁力作功为所以:外力需对线圈作多少功11-31 一半圆形闭合线圈半径通过电流放在均匀磁场中,磁场方向与线圈面平行,如题11-31图所示,求(1)线圈所受力矩的大小和方向;(2)若此线圈受力矩的作用转到线圈平面与磁场垂直的位置,则力矩作功多少?分析:闭合线圈所受的磁力矩可以运用磁力矩与磁矩关系表达式求出。运用磁力做功表达式求出磁力矩做功。解:(1)线圈受磁力矩,题11-31图所以(2)此时磁力作功专心-专注-专业
限制150内