电动机转差频率间接矢量控制matlab仿真(毕业设计)(共42页).doc
《电动机转差频率间接矢量控制matlab仿真(毕业设计)(共42页).doc》由会员分享,可在线阅读,更多相关《电动机转差频率间接矢量控制matlab仿真(毕业设计)(共42页).doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上异步电动机转差频率间接矢量控制matlab仿真摘要本文基于 MATLAB 对异步电动机转差频率控制调速系统进行仿真研究。首先分析了异步电动机转差频率控制技术的主要控制方法、基本组成与工作原理。之后对异步电机的动态模型做了分析,进一步介绍了异步电机的坐标变换,对异步电机转差频率矢量控制系统的基本原理进行了阐述,通过仿真工作,证明了其可行性。最后,通过对仿真结果进行分析,归纳出如下结论:单纯的转差频率控制带载能力差,应用转差频率矢量控制可增强电机对转矩的调节能力且无需电压补偿。关键词:转差频率,矢量控制,异步电动机Induction MotorSlip Frequency
2、 Indirect Vector ControlMatlab SimulationAbstractThis paper focuses on the matlab simulation of the asynchronous motor speed regulation system.Firstly , this paper analyzes the main control method , basic composition and working principle of the induction motor slip frequency control technology.Seco
3、ndly , this paper analysis the dynamic model of asynchronous motor and further introduces the coordinate transfer and the basic principle of motor slip frequency vector control system. At the same time , the simulation work to prove its feasibility.Finally , according to analysis of the simulation r
4、esults , the conclusions are as follows simply slip frequency control is always with poor load capacity , on the contrary the vector control applications can enhance the ability to regulate the motor of the torque and without voltage compensation. Key words : slip frequency , vector control , induct
5、ion motor 目录专心-专注-专业1绪论1.1现代交流调速技术的发展在工业化的进程中 ,电动机作为将电能转换为机械能的主要设备。实际应用中要求电机一方面要具有较高的机电能量转换效率;另一方面能够根据生产工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对节省能量,提高产品质量,提高劳动生产率有着直接的决定性影响。因此 ,调速技术一直是研究的热点。长期以来 ,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。直流电动机在额定转速以下运行时 ,保持励磁电流恒定 ,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时 ,保持电枢电压恒定 ,可用改变励磁的方法
6、实现恒功率调速。同时采用转速、 电流转速双闭环直流调速系统可获得优良的静,动态调速特性。因此 ,20世纪80年代以前 ,在变速传动领域中 ,直流调速一直占据主导地位。交流电动机自1885年出现后,由于没有理想的调速方案,因而长期用于恒速拖动领域,近些年来 ,科学技术的迅速发展为交流调速技术的发展创造了极为有利的技术条件和物质基础。1.电力电子器件的不断更新。迄今为止 ,电力电子器件的发展经历了分立换流关断器件(晶闸管元件),自关断器件(GTR、GTO、VDMOS、IGBT), 功率集成电路 PIC, 智能模块 IPM,专用功率器件模块ASPM, 使得变频装置在性能与价格比上可以与直流调速装置相
7、媲美。2.先进的调制技术的出现。20世纪60年代中期 ,德国A Schonung等人率先把通信系统中的调制技术推广应用于变频调速中,即PWM技术。PWM技术的发展和应用优化了变频装置的性能,而且更重要的意义是抑制逆变器输出电压或电流中的谐波分量 ,从而降低或消除了变频调速时电机的转矩脉动 ,提高了电机的工作效率 ,扩大了调速系统的调速范围。3.矢量控制技术和直接转矩控制技术的提出。1975 年 ,德国学者 F Blaschke 提出了矢量变换控制原理 ,采用参数重构和状态重构的现代控制理论概念实现了交流电动机定子电流的励磁分量和转矩分量之间的解藕 ,实现了将交流电动机的控制过程等效为直流电动机
8、的控制过程。1985年 ,德国鲁尔大学的 M Depenbrock 对时空间理论的研究 ,提出了直接转矩控制理论,以转矩和磁通的独立跟踪自调整并借助于转矩的 Band - Band 控制来实现转矩和磁通直接控制。4.微型计算机控制技术的发展。单片微机MCS,DSP,精简指令集计算机(Reduced Instruction Set Computer RISC)为控制核心的微机控制技术使得交流调速从模拟控制迅速走向数字控制。数字化使得控制器对信息处理能力大幅度提高,各种计算轻易实现,从而交流调速的现代控制方法终于得以完全实现。交流调速系统与直流调速系统相比,具有如下特点:(1)容量大。(2)转速高
9、且耐压高。(3)交流电机的体积,重量,比同等容量的直流电机小,且结构简单,经济可靠,惯性小。(4)交流电机环境适应力强,坚固耐用,可以在十分恶劣的环境下使用。(5)高性能,高精度的新型交流拖动系统已达到同直流拖动系统一样的性能指标。(6)交流调速系统表现出显著的节能。1.1.1异步电动机交流调速系统的类型由异步电动机工作原理可知 ,从定子传入转子的电磁功率可分为两部分:一部分是拖动负载的有效功率;另一部分是转差功率,与转差率成正比。转差功率如何处理 ,是消耗掉还是回馈给电网 ,可衡量异步电动机调速系统的效率高低。因此按转差功率处理方式的不同可以把现代异步电动机调速系统分为三类: (1) 转差功
10、率消耗型调速系统 。(2) 转差功率回馈型调速系统 。(3) 转差功率不变型调速系统。1.1.2交流调速系统的发展趋势和动向1智能化控制方法对交流调速系统的影响研究。主要针对电机参数的不确定性、 纯滞后或非线性耦合等特性 ,以及电机转子参数估计的不准确及参数变化的影响都会造成定向坐标的偏移,模糊控制、 人工神经网络通过输入、 输出信息进行仿人思维的智能化控制方法开始引入到交流调速系统中 ,成为交流调速控制技术新的研究方向。取消通过机械连接的测速发电机及其他测速传感器 ,实现无硬件测速传感器的交流调速系统。2.改善交流调速系统效率的方法研究。主要措施是降低电力电子器件的开关损耗。如使电力电子器件
11、在零电压或电流下转换 ,即工作在所谓 “软开关”状态下,从而使开关损耗降低到零。3.中压变频装置的研究。4.系统可靠性的研究。提高系统的可靠性主要通过两个途径:一是提高部件的设计和制造水平;二是利用冗余和容错技术。利用马尔柯夫过程理论对容错控制系统进行可靠性建模 ,研究冗余和容错系统的硬件结构和软件设计也是交流调速研究的新领域 ,是热点课题之一。1.2本文主要研究内容1.2.1转差频率控制的基本概念本文主要介绍异步电动机的转差频率控制方式,在该基础上进一步介绍转差频率间接矢量控制方式。由电力拖动的基本方程式: (1-1) 根据基本运动方程式,控制电磁转矩就能控制。因此,归根结底,控制调速系统的
12、动态性能就是控制转矩的能力。图1.1异步电动机稳态等效电路和感应电动势电磁转矩关系式: (1-2) 由图1.1异步电动机稳态等效电路图可知: (1-3) 将(1-3)代入(1-2)中得: (1-4) 将电机气隙电动势 代入式(1-4)得 (1-5) 令并定义为转差频率,其中为电机的结构常数,则式(1-5)可化为 (1-6) 当电机稳定运行时,值很小,可以认为,则转矩可近似表示为 (1-7) 上式表明,在很小的稳定运行范围内,如果能够保持气隙磁通不变,则有,从而控制了转差频率就相当于控制了转矩。 1.2.2基于异步电动机稳态模型控制的转差频率控制规律当较大时,采用式(1-4)的精确转矩公式,其转
13、矩特性如图1.2所示,当较小时处于稳定运行段,转矩与转差频率成正比,当达到最大值时,达到。图1.2 按恒值控制的特性对于式(1-4),取,可得, (1-8) (1-9)1在转差频率控制系统中,只要给定限幅,使其限幅值为 (1-10)则可保持与的正比关系,从而可以用转差频率控制来代替转矩控制。2保持恒定的条件:由异步电机等效电路图1.1,可知 (1-11) 可见该控制需要在实现恒控制的基础上再提高电压以补偿定子电压降。如果忽略电流相量相位变化的影响,不同定子电流时恒控制所需的电压-频率特性 如图1.3所示。图1.3 不同定子电流时恒压频比控制所需的电压-频率特性上述关系表明,只要和及的关系符合上
14、图所示特性,就能保持恒定,也就是保持恒定。这是转差频率控制的基本规律之二。 总结起来,转差频率控制的规律是:(1)在的范围内,转矩基本上与成正比,条件是气隙磁通不变。(2)在不同的定子电流值时,按上图的函数关系控制定子电压和频率,就能保持气隙磁通恒定。由以上工作情况可以看出,转差频率控制系统的突出优点在于频率控制环节的输入是转差信号,而频率信号是由转差信号与实际转速信号相加得到的。这样,在转速变化过程中,定子频率随着实际转速同步上升或下降。与转速开环系统中按电压成正比地直接产生频率给定信号相比,加、减速更为平滑,且容易使系统稳定。稳态工作时可以实现无差调节,在急剧的动态过程中,可维持电机转矩接
15、近于最大值。在一定程度上类似于直流双闭环系统,因此属于高性能的控制系统。本文所设计的变频调速系统即采用转差频率控制方式。1.2.3基于异步电动机动态态模型控制的转差频率矢量控制规律异步电动机的转差频率矢量控制是在传统的直接利用转差频率的基础上,异步电动机的动态数学模型是一个高阶,非线性,强耦合的多变量系统。如果将异步电动机的物理模型等效成类似的直流电动机模型,分析和控制就可以大大简化了。所以需要对异步电动机进行坐标变换。因此,在三相坐标系上的定子电流通过三相两相变换可以等效成两相静止坐标系上的交流电流,在通过同步下旋转变化,可以等效成同步旋转坐标系上的直流电 如果观察者站到铁心上与坐标系一起旋
16、转,通过控制,可使交流电动机的转子总磁通就是等效直流电动机的励磁磁通,如果把轴定位于的方向上,称做M轴,把轴称做T轴,则M绕组相当于直流电动机的励磁绕组, 相当于励磁电流,T绕组相当于伪静止的电枢绕组,相当于与转矩成正比的电枢电流。把上述等效关系用结构图的形式画出来,如下图所示。从整体上看,输入为A,B,C三相电压,输出为转速,是一台异步电动机。从内部看,经过3/2变换和同步旋转变换,变成一台由和输入由输出的直流电动机。图1.4异步电动机的坐标变换图既然异步电动机经过坐标变换可以等效成直流电动机,那么,模仿直流电动机的控制策略,得到直流电动机的控制量,经过相应的坐标反变换,就能够控制异步电动机
17、了,由于进行坐标变换的是电流的空间矢量,所以这样通过坐标变换实现的控制系统就叫做矢量控制系统,简称VC系统。VC系统的原理结构如上图所示;图中给定和反馈信号经过类似于直流调速系统所用的控制器,产生励磁电流的给定信号和电枢电流的给定信号,经过反旋转变换得到,再经过2/3变换得到 把这三个电流控制信号和由控制器得到的频率信号相加到电流控制的变频器上,即可输出异步电动机调速所需的三相变频电流。而在磁链闭环控制的VC系统中,转子磁链反馈信号是由磁链模型获得的,其幅值和相位都受到电机参数变化的影响,造成控制的不准确性,既然这样,与其采用磁链闭环控制而反馈不准,不如采用磁链开环控制,系统反而会简单一些。在
18、这种情况下,可利用矢量控制方程中的转差公式,构成转差型的矢量控制系统,又称间接矢量控制系统。2异步电动机转差频率间接矢量控制交流调速系统2.1异步电机的特点异步电动机转差频率控制的转速闭环变压变频调速系统的控制思想建立在异步电动机的静态数学模型上,动态性能指标不高。我们常常会联想到直流电机的调速系统,由于直流电机在额定励磁下是一个二阶线性系统,传递函数明确,从而系统的优化会变得简单,PI调节器的参数的设置也轻而易举。而相对于直流电机,交流电机具有以下特点:1异步电动机变压变频调速时需要进行电压电流的协调控制,有电压和电流两个独立的输入变量。在输出变量中,除转速外,磁通也得算一个独立的输出变量。
19、因为电动机只有一个三相输入电源,磁通的建立和转速的变化是同时进行的,为了获得良好的动态性能,也希望对磁通施加某种控制,使它在动态过程中尽量保持恒定,才能产生较大的动态转矩。由于这些原因,异步电动机是一个多变量系统,而电压,电流,频率,磁通,转速之间又互相都有影响,所以是一个强耦合的多变量系统,可以用图2.1定性的表示。2在异步电动机中,电流乘磁通产生转矩,转速乘磁通得到感应电动势,由于它们都是同时变化的,在数学模型中,就含有两个变量的乘积项,这样一来,即使不考虑磁饱和等因素,数学模型也是非线性的。3三相异步电动机有三个定子绕组,转子也可等效为三个绕组,每个绕组产生磁通时都有自己的电磁惯性,再算
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 电动机 频率 间接 矢量 控制 matlab 仿真 毕业设计 42
限制150内