高中数学完整讲义排列与组合7排列组合问题的常用方法总结(共20页).docx
《高中数学完整讲义排列与组合7排列组合问题的常用方法总结(共20页).docx》由会员分享,可在线阅读,更多相关《高中数学完整讲义排列与组合7排列组合问题的常用方法总结(共20页).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上排列组合问题的常用方法总结1知识内容1基本计数原理加法原理分类计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种方法,在第类办法中有种不同的方法那么完成这件事共有种不同的方法又称加法原理乘法原理分步计数原理:做一件事,完成它需要分成个子步骤,做第一个步骤有种不同的方法,做第二个步骤有种不同方法,做第个步骤有种不同的方法那么完成这件事共有种不同的方法又称乘法原理加法原理与乘法原理的综合运用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事
2、才告完成,那么计算完成这件事的方法数时,使用分步计数原理分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、组合问题的基本思想方法,这两个原理十分重要必须认真学好,并正确地灵活加以应用2 排列与组合排列:一般地,从个不同的元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(其中被取的对象叫做元素)排列数:从个不同的元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示排列数公式:,并且全排列:一般地,个不同元素全部取出的一个排列,叫做个不同元素的一个全排列的阶乘:正整数由到的连乘积,叫作的阶乘,用表示规定:组合:
3、一般地,从个不同元素中,任意取出个元素并成一组,叫做从个元素中任取个元素的一个组合组合数:从个不同元素中,任意取出个元素的所有组合的个数,叫做从个不同元素中,任意取出个元素的组合数,用符号表示组合数公式:,并且组合数的两个性质:性质1:;性质2:(规定)排列组合综合问题解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法:1特殊元素、特殊位置优先法元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素;位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置;2分类分步法:对于较复杂的排列组合问题,常需要
4、分类讨论或分步计算,一定要做到分类明确,层次清楚,不重不漏3排除法,从总体中排除不符合条件的方法数,这是一种间接解题的方法4捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元素进行排列,然后再给那“一捆元素”内部排列5插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空6插板法:个相同元素,分成组,每组至少一个的分组问题把个元素排成一排,从个空中选个空,各插一个隔板,有7分组、分配法:分组问题(分成几堆,无序)有等分、不等分、部分等分之别一般地平均分成堆(组),必须除以!,如果有堆(组)元素个数相等,必须除以!8错位法:编号为1至的个小球放入编号为1到的
5、个盒子里,每个盒子放一个小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当,3,4,5时的错位数各为1,2,9,44关于5、6、7个元素的错位排列的计算,可以用剔除法转化为2个、3个、4个元素的错位排列的问题1排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途径:元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素;位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数求解时应注意先把具体问题转化或归结为排列或组合问题;再通过分析确定运用分类计数原理还是分步计
6、数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式子计算作答2具体的解题策略有:对特殊元素进行优先安排;理解题意后进行合理和准确分类,分类后要验证是否不重不漏;对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复;对于元素相邻的条件,采取捆绑法;对于元素间隔排列的问题,采取插空法或隔板法;顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理;对于正面考虑太复杂的问题,可以考虑反面对于一些排列数与组合数的问题,需要构造模型典例分析直接法(优先考虑特殊元素特殊位置,特殊元素法,特殊位置法,直接分类讨论)【例1】 从名外语系大学生中选派名同学参加广州亚运会翻译、交通、礼仪三
7、项义工活动,要求翻译有人参加,交通和礼仪各有人参加,则不同的选派方法共有 【例2】 北京财富全球论坛期间,某高校有名志愿者参加接待工作若每天排早、中、晚三班,每班人,每人每天最多值一班,则开幕式当天不同的排班种数为A B C D【例3】 在平面直角坐标系中,轴正半轴上有个点,轴正半轴有个点,将轴上这个点和轴上这个点连成条线段,这条线段在第一象限内的交点最多有( )A个 B个 C个 D个【例4】 一个口袋内有个不同的红球,个不同的白球,从中任取个球,红球的个数不比白球少的取法有多少种?若取一个红球记分,取一个白球记分,从中任取个球,使总分不少于分的取法有多少种?【例5】 一个口袋内装有大小相同的
8、个白球和个黑球从口袋内取出个球,共有多少种取法?从口袋内取出个球,使其中含有个黑球,有多少种取法?从口袋内取出个球,使其中不含黑球,有多少种取法?【例6】 有名划船运动员,其中人只会划左舷,人只会划右舷,其余人既会划左舷也会划右舷从这名运动员中选出人平均分在左、右舷划船参加比赛,有多少种不同的选法?【例7】 若,则,就称是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为( )A B C D【例8】 从名女生,名男生中,按性别采用分层抽样的方法抽取名学生组成课外小组,则不同的抽取方法种数为_A B CD【例9】 某城市街道呈棋盘形,南北向大街条,东西向大街条,一人欲从西南角走到东北
9、角,路程最短的走法有多少种【例10】 某幢楼从二楼到三楼的楼梯共级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用步走完,则上楼梯的方法有_种【例11】 亚、欧乒乓球对抗赛,各队均有名队员,按事先排好的顺序参加擂台赛,双方先由号队员比赛,负者淘汰,胜者再与负方号队员比赛,直到一方全被淘汰为止,另一方获胜,形成一种比赛过程那么所有可能出现的比赛过程有多少种?【例12】 设含有个元素的集合的全部子集数为,其中由个元素组成的子集数为,则的值为( )A B C D【例13】 设坐标平面内有一个质点从原点出发,沿轴跳动,每次向正方向或负方向跳动一个单位,经过次跳动质点落在点(允许重复过此点)
10、处,则质点不同的运动方法种数为 【例14】 从名男同学,名女同学中选名参加体能测试,则选到的名同学中既有男同学又有女同学的不同选法共有_种(用数字作答)【例15】 在的边上有四点,边上有共个点,连结线段,如果其中两条线段不相交,则称之为一对“和睦线”,和睦线的对数共有:( )A B C D【例16】 从7名男生5名女生中,选出5人,分别求符合下列条件的选法种数有多少种? 、必须当选; 、都不当选; 、不全当选; 至少有2名女生当选; 选出5名同学,让他们分别担任体育委员、文娱委员等5种不同工作,但体育委员由男生担任,文娱委员由女生担任【例17】 甲组有名男同学,名女同学;乙组有名男同学、名女同
11、学若从甲、乙两组中各选出名同学,则选出的人中恰有名女同学的不同选法共有( )A种B种C种D种【例18】 从名大学毕业生中选人担任村长助理,则甲、乙至少有人入选,而丙没有入选的不同选法的种数为( )A B C D【例19】 某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )ABCD【例20】 要从个人中选出个人去参加某项活动,其中甲乙必须同时参加或者同时不参加,问共有多少种不同的选法?【例21】 有四个停车位,停放四辆不同的车,有几种不同的停法?若其中的一辆车必须停放在两边的停车位上,共有多少种不同的停法?【例22】 某班5位同学参加周
12、一到周五的值日,每天安排一名学生,其中学生甲只能安排到周一或周二,学生乙不能安排在周五,则他们不同的值日安排有( )A288种B72种C42种D36种【例23】 某班有名男生,名女生,现要从中选出人组成一个宣传小组,其中男、女学生均不少于人的选法为( )A BC D【例24】 用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个数字1不排在个位和千位数字1不在个位,数字6不在千位【例25】 甲、乙、丙、丁、戊名学生进行讲笑话比赛,决出了第一到第五的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军”,对乙说:“你当然不会是最差的”从
13、这个回答分析,人的名次排列共有_(用数字作答)种不同情况【例26】 某高校外语系有名奥运会志愿者,其中有名男生,名女生,现从中选人参加某项“好运北京”测试赛的翻译工作,若要求这人中既有男生,又有女生,则不同的选法共有( )A种B种C种D种【例27】 用5,6,7,8,9组成没有重复数字的五位数,其中恰好有一个奇数夹在两个偶数之间的五位数的个数为( )A B C D【例28】 某电视台连续播放个不同的广告,其中有个不同的商业广告和个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有( )A种 B种 C种 D种【例29】 从6人中选4人分别到巴
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 完整 讲义 排列 组合 排列组合 问题 常用 方法 总结 20
限制150内