2022年《自动控制原理》黄坚课后习题答案 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年《自动控制原理》黄坚课后习题答案 .pdf》由会员分享,可在线阅读,更多相关《2022年《自动控制原理》黄坚课后习题答案 .pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2-1试建立图所示电路的动态微分方程+C-uiuoR1R2i1ii2+C-uiuoR1R2i1ii2Lu1解:u1=ui-uoi2=Cdu1dti1=i-i2uoi=R2u1i1=R1=ui-uoR1dtd(ui-uo)=C(a)uCd(ui-uo)dtuo-R2=i-uoR1i=i1+i2i2=Cdu1dtuoi1=R2u1-uo=LR2duodtR1i=(ui-u1)(b)解:)-R2(ui-uo )=R1u0-CR1R2(duidtdtduoCR1R2duodtduidt+R1uo+R2u0=CR1R2+R2uiu=R1i-u1uo+CR2du1dtu1=uo+LR2duodtuduod
2、tR1R2Lduodt+ CLR2d2uodt2=-iR1uoR1uoR2+C)uoR1R2Lduodt) CLR2d2uodt2=+(uiR11R11R2+(C+2-2 求下列函数的拉氏变换。(1) f(t)=sin4t+cos4tLsint= 2+s2=s+4s2+16Lsin4t+cos4t = 4s2+16ss2+16+s2+s2Lcost=解:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 19 页 - - - - - - - - - - (2) f(t)=t3+e4t解:Lt3+e
3、4t= 3!s41s-4+ 6s+24+s4s4(s+4)= (3) f(t)=tneatLtneat=n!(s-a)n+1解:(4) f(t)=(t-1)2e2tL(t-1)2e2t=e-(s-2)2(s-2)3解:2-3求下列函数的拉氏反变换。A1=(s+2)s+1(s+2)(s+3)s=-2=-1=2f(t)=2e-3t-e-2t(1) F(s)=s+1(s+2)(s+3)解:A2=(s+3)s+1(s+2)(s+3)s=-3F(s)= 2s+31s+2-= A1s+2 s+3+ A2(2) F(s)=s(s+1)2(s+2)f(t)=-2e-2t-te-t+2e-t解:= A2s+1
4、s+2+ A3+ A1(s+1)2A1=(s+1)2s(s+1)2(s+2)s=-1A3=(s+2)s(s+1)2(s+2)s=-2ddsss+2A2= s=-1=-1=2=-2(3) F(s)=2s2-5s+1s(s2+1)F(s)(s2+1)s=+j=A1s+A2s=+jA2=-5A3=F(s)ss=0f(t)=1+cost-5sint解:= s+ A3s2+1A1s+A2=12ss 2-5s+1=A1s+A2 s=js=jj -2-5j+1=jA1+A2 -5j-1=-A1+jA2 A1=1F(s)= 1ss2+1s-5s2+1+(4) F(s)=s+2s(s+1)2(s+3)解:=+s
5、+1A1s+3A2(s+1)2+sA3+A4-12A1= 23A3= 112A4= A2= ds=-1ds(s+2)s(s+3) -34= -34A2= +-43+f(t)=e-t32e-3t2-te-t121= s=-1 s(s+3)2s(s+3)-(s+2)(2s+3) 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 19 页 - - - - - - - - - - (2-4) 求解下列微分方程。y(0)=y(0)=2 +6y(t)=6+5d2y(t)dt2dy(t)dt(1)解:s2Y(
6、s)-sy(0)-y(0)+5sY(s)-5y(0)+6Y(s)= 6sA1=1y(t)=1+5e-2t-4e-3tA2=5 A3=-4Y(s)=6+2s2+12ss(s2+5s+6)= A1s+2 s+3+ A3s+ A22-5试画题图所示电路的动态结构图,并求传递函数。(1)ii2+-uruc+-R2R1ci1解:I2(s)I1(s)+Uc(s)Ur(s)_Cs1R1+R2Uc(s)I(s)( Ur(s)Uc(s)=1R11+(+sC)R21R1+sC)R2=R2+R1R2sCR1+R2+R1R2sC(2)+C-urucR1R2Lu1I(s)Ur(s)_1R1U1(s)解:I1(s)-I2
7、(s)L31CsU1(s)Uc(s)-1LsR2I1(s)Uc(s)L1L2L1=-R2 /Ls L2=-/LCs2L3=-1/sCR11=1L1L3=R2/LCR1s2P1=R2/LCR1s2=R1CLs2+(R1R2C+L)s+R1+R2Ur(s)Uc(s)R22-8 设有一个初始条件为零的系统,系统的输入、输出曲线如图,求G(s)。c(t)t0TK(t)c(t)t0TK(t)解:Kt-Tc(t)=T(t-T)KC(s)=TsK(1-e )2-TSC(s)=G(s)精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - -
8、 - -第 3 页,共 19 页 - - - - - - - - - - 2-9 若系统在单位阶跃输入作用时,已知初始条件为零的条件下系统的输出响应,求系统的传递函数和脉冲响应。r(t)=I(t)c(t)=1-e +e-2t-tR(s)=1s解:G(s)=C(s)/R(s)s+21-1sC(s)=1s+1+=s(s+1)(s+2)(s2+4s+2)=(s+1)(s+2)(s2+4s+2)C(s)=(s+1)(s+2)(s2+4s+2)c(t)= (t)+2e-2t-e-t2-10 已知系统的拉氏变换式,试画出系统的动态结构图并求传递函数。解:X1(s)=R(s)G1(s)-G1(s)G7(s)
9、-G8(s)C(s)X2(s)=G2(s)X1(s)-G6(s)X3(s)X3(s)=G3(s)X2(s)-C(s)G5(s)C(s)=G4(s)X3(s)=R(s)-C(s)G7(s)-G8(s)G1(s)G1G2G3G5-C(s)-R(s)G4G6G8G7C(s)G7(s)-G8(s)G6(s)X3(s)X1(s)X2(s)C(s)G5(s)X3(s)G1G2G5-C(s)-R(s)G7-G8G1+G3G2G63G4C1+G3G2G6 +G3G4G5+G1G2G3G4(G7 -G8)G1G2G3G4R(s)(s)=2-11求系统的传递函数(a)G1(s)G2(s)G3(s)H1(s)_+R
10、(s)C(s)H2(s)解: L1=-G2H1L2=-G1G2H2P1=G1G2P2=G3G21 =12 =1R(s)C(s)=nk=1Pkk=1+G2H1+G1G2H21+G2H1+G1G2H2G2G1+G2G3=(b)G1(s)G2(s)G3(s)G4(s)_+R(s)C(s)H(s)解:R(s)C(s)=1+G1G2H+G1G4HG1G2+G2G3+G1G2G3G4 HL1=-G1G2H L2=-G1G4HP1=G1G21 =1P2=G3G2=1+G1G4H+G1G2H2=1+G1G4HH1_+G1+C(s)R(s)G3G2(c)H1_+G1+C(s)R(s)G3G2H1C(s)R(s)
11、1+G1G2+G1H1 G3H1G1G2(1 G3H1)=精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 19 页 - - - - - - - - - - H_G1+C(s)R(s)G2(d) 解: L1=-G2HP1=G11 =1P2=G22 =11+G2H1(G1+G2 )R(s)C(s)=-_G1+C(s)R(s)G2G3G4(e)解: L2=G1G4L3=-G2G3L4=G2G4L1=-G1G3P1=G11=1 P2=G22=11+G1G3+G2G3 G1G4-G2G4=(G1+G2)
12、C(s)R(s)_G1+C(s)R(s)G2(f) L1L2解: L1=-G1G2L2=G2P1=G11=1-G2=1+G1G2-G2C(s)R(s) 1+G1G2 G2G1(1 G2)=2-12 (a)R(s)G1(s)G2(s)H2(s)_+C(s)H3(s)_H1(s)+D(s)L1L2L1=G2H2L2=-G1G2H31=1P1=G1G21-G2H2+G1G2H3G2G1=R(s)C(s)P1=G21=1 P2=-G1G2H12=11-G2H2+G1G2H3G2(1-G1H1 )=D(s)C(s)(b)C(s)R(s)G1G2H_解: L1=-G1G2L2=-G1G2H1=1P1=G1
13、G21+G1G2H+G1G2G1G2=R(s)C(s)P1=GnG21=1P2=12=1+G1G2HD(s)C(s)1+G1G2+G1G2H=1+GnG2+G1G2H2-13 (a)C(s)E(s)G1G2G3_+R(s)L1L2解: L1=-G2L2=-G1G2G3P1=G2G3P2=G1G2G3R(s)C(s)=1+G2+G1G2G3G2G3+G1G2G31=12=1P1=-G2G32=1+G21=1P2=1R(s)C(s)=1+G2+G1G2G3-G2G3+1+G2(b)C(s)E(s)G1G2-+R(s)G3G4G5解: L1=-G3G4L2=-G2G3G51=1P1=G1G5P1=G
14、1G51=1P2=12=1+G3G4P2=G2G3G52=11+G2G3G5+G3G4=R(s)C(s)G1G2G5+G1G51+G2G3G5+G3G4=R(s)E(s)G1G5+(1+G1G5 )精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 19 页 - - - - - - - - - - E(s)G(s)X(s)R(s)G4(s)+C(s)1(s)G2(s)-+G3D(s)2-14C(s)R(s)=1+G3(G1+G2)(G1+G2)(G3+G4)解:L1=-G1G3L2=-G2G31=
15、1P1=G1G3P2=G2G32=1P3=G1G43=1P4=G2G44=1E(s)R(s)=1+G3(G1+G2)1(CD s)(s)=1=G2(s)E(s)X(s)G3C1(s)R1(s)+G1G2+-H2H1G4G5-(s)G6C2R2(s)2-15解: L1=G1G2L3=-G4L2=-G1G4G5H1H2P1=G1G2G3=1-G1G2+G1G4G35H1H2+G4 -G1G2G41=1+G41+G4+G1G4G5H1H2-G1G2-G1G2G4G1G2G3(1+G4 )=C1(s)R1(s)1+G4+G1G4G5H1H2-G1G2-G1G2G4G4G5G6(1-G1G2)=C2(s
16、)R2(s)1+G4+G1G4G5H1H2-G1G2-G1G2G4-G1G2G3G4G5H1=C1(s)R2(s)1+G4+G1G4G5H1H2-G1G2-G1G2G4G1G4G5G6H2=C2(s)R1(s)解:c(t)=c()98%t=4T=1 minr(t)=10te(t)=r(t)-c(t)c(t)=10(t-T+ e)-t/T=10(T-e)-t/Tess=limte(t)=10T =2.5T=0.25-+R1R0Curuc解:R1Cs+1R1/R0G(s)= uc(t)=K(1e tT-)KTs+ 1=T=R1C=0.5 K=R1/R0=10 =10(1e -2t)8=10(1e
17、-2t)0.8=1e -2te -2t=0.2 t=0.83-1 设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶系统,求时间常数 T。如果将温度计放在澡盆内, 澡盆的温度以 10oC/min 的速度线性变化,3-2 电路如图,设系统初始状态为零。(1)求系统的单位阶跃响应 ,及 uc(t1)=8 时的 t1值R0=20 kR1=200 kC=2.5F (2) 求系统的单位脉冲响应,单位斜坡响应,及单位抛物响应在 t1时刻的值精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 19
18、 页 - - - - - - - - - - g(t)=e-t/TTKt1=0.8=4解:uc(t)=K(t-T+Te-t/T)=4R(s)=1s2R(s)=1R(s)=1s3ss+1/T+T2=K(Ts2-1s3-T2)=1.2Ts1s3K+ 1Uc(s)= -0.5t+0.25-0.25e-2t)12t2uc(t)=10( 4s(s+5)G(s)=解:R(s)=s2+5s+4C(s)4s(s+1)(s+4)C(s)=4R(s)=s1s+41+1/3s=4/3s+1-13c(t)=1+ -4t-t43-e e G(s)=1s(s+1)解:C(s)=s2+s+1R(s)12= 1n 2 n =
19、1=0.5 =1n =0.866d= n2 1-=60o=tg-121- tr=d -= 3.14-3.14/30.866=2.42tp=d3.140.866= =3.63%=100%e-1-2=16%-1.8ets= 3n =6ts= 4n =83-6 已知系统的单位阶跃响应:c(t)=1+0.2e -60t-10t-1.2e(1) 求系统的闭环传递函数。(2) 求系统的阻尼比和无阻尼振荡频率。解:s+60+0.21sC(s)=1.2s+10-s(s+60)(s+10)=600=s2+70s+600C(s)R(s)600R(s)=s12=600n 2n =70=1.43 =24.5n 1.3
20、tc(t)010.1解:tp=0.121- n =0.3e- 1-2e1-2=3.3n2 1-3.140.1=31.421- /=ln3.3=1.1921- )2/(=1.429.862 =1.42-1.422=0.35=33.4n s(s+2 nn )G(s)=21115.6s(s+22.7)=3-3 已知单位负反馈系统的开环传递函数, 求系统3-4 已知单位负反馈系统的开环传递函数,求系统的上升时间 t 、峰值时间 t 、超调量 % 和调整时间 t。3-7 设二阶系统的单位阶跃响应曲线如图,系统的为单位反3-11 已知闭环系统的特征方程式,试用劳斯判据判断系统的稳定性。精品资料 - - -
21、 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 19 页 - - - - - - - - - - (1) s3+20s2+9s+100=0解:劳斯表如下:s1s0 s3 s2 1 9 20 100 4100系统稳定。(3) s4+8s3+18s2+16s+5=0118 5 s4 s3 8 16 劳斯表如下:s2 16 5 s121616s0 5系统稳定。G(s)=s(s+1)(0.5s2+s+1)K(0.5s+1)解: s4+3s3+4s2+2s+Ks+2K=014 2K s4 s3 3 2+K s2 b31b3
22、1= 10-2K3 (K-1.7)(K+11.7)0K00R(s)-s+1s10s(s+1)C(s)解: G(s)=s2(s+1)10(s+1)(s)=s3 +s2+10 s+1010(s+1)s3 s2 1 10110 s1 b31s0 10b31= 10 -10 101r(t)=I(t)+2t+t2s2R(s)=1s2+s32+3-12 已知单位负反馈系统的开环传递函3-13 已知系统结构如图, 试确定系统稳定时 值范围。3-14 已知系统结构如图,试确定系3-16 已知单位反馈系统的开环传递函数,精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归
23、纳 - - - - - - - - - -第 8 页,共 19 页 - - - - - - - - - - 解:(0.1s+1)(0.2s+)(1) G(s)=20Kp=20=0ess1=R01+K=211K =0 ess2=Ka=0 ess3=ess=1K =10 Ka=0 ess3=ess=s(s+2)(s+10)(2) G(s)=200s(0.5s+1)(0.1s+1)=10Kp=ess1=0ess2=K2=10210(2s+1)s2(s2+4s+10)(3) G(s)=2Kp=ess1=0s2(0.1s2+0.4s+1)=(2s+1)K =ess2=0Ka=1ess3=2ess=23-
24、17 已知系统结构如图。-R(s)-K1ss2C(s)(1) 单位阶跃输入 :确定 K1 和值 。%=20%ts=1.8(5%)解:sKG(s)=s2+K11(s)=s2+K1s+K1K12 n =K12=K1n =0.2e- 1-2ts= 3n =1.8=0.45n31.8*0.45=3.72n K1=13.7=0.24(2) 求系统的稳态误差:1tr(t)=I(t), t ,22解: G(s)=s2+K1sK1=s(s+1)K111=1Kp=ess1=0R(s)=1sR(s)=s21=K K ess2= =0.24R(s)=s31Ka=0 ess3=-s-Ks(s+2)R(s)C(s)解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 自动控制原理 2022年自动控制原理黄坚课后习题答案 2022 自动控制 原理 课后 习题 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内