2022年初中数学知识点总结公式总结 .pdf
《2022年初中数学知识点总结公式总结 .pdf》由会员分享,可在线阅读,更多相关《2022年初中数学知识点总结公式总结 .pdf(12页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习必备欢迎下载初中数学知识点总结一、基本知识一、数与代数A、数与式:1、有理数:整数 正整数, 0,负整数;分数正分数,负分数数轴:画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个 有理数 都可以用数轴上的一个点来表示。如果两个数只有符号不同, 那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。绝对值 :在数轴上,一个数所对应的点与原点的距离叫做该数的绝对
2、值。正数的绝对值是他的本身、负数的绝对值是他的相反数、0 的绝对值是 0。两个负数比较大小,绝对值大的反而小。有理数的运算 :带上符号进行正常运算。加法: 同号相加,取相同的符号,把绝对值相加。异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。一个数与 0 相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:两数相乘,同号得正,异号得负,绝对值相乘。任何数与 0 相乘得 0。乘积为 1 的两个有理数互为倒数。除法:除以一个数等于乘以一个数的倒数。0 不能作除数。乘方:求 N 个相同因数 A 的积的运算叫做乘方, 乘方的结果叫幂, A 叫
3、底数,N 叫次数或指数。混合顺序: 先算乘法,再算乘除,最后算加减,有括号要先算括号里的。2、实数无理数无理数 :无限不循环小数叫无理数,例如:=3.1415926 平方根: 如果一个 正数 X 的平方等于 A,那么这个正数X 就叫做 A 的算术平方根。如果一个数 X 的平方等于 A,那么这个数 X 就叫做 A 的平方根。一个正数有 2 个平方根; 0 的平方根为 0;负数没有平方根。求一个数 A 的平方根运算,叫做开平方,其中A 叫做被开方数。立方根 :如果一个数 X 的立方等于 A,那么这个数 X 就叫做 A 的立方根。正数的立方根是正数、 0 的立方根是 0、负数的立方根是负数。求一个数
4、 A 的立方根的运算叫开立方,其中A 叫做被开方数。实数: 实数分有理数和无理数。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 12 页 - - - - - - - - - - 学习必备欢迎下载在实数范围内,相反数,倒数, 绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;每一个实数都可以在数轴上的一个点来表示。3、代数式代数式 :单独一个数或者一个字母也是代数式。合并同类项 :所含字母相同,并且相同字母的指数也相同的项,叫做同类项;把同类项合并成一项就叫做合并同类项。在合并同
5、类项时,我们把同类项的系数相加,字母和字母的指数不变。4、整式与分式整式:数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式, 单项式和多项式统称整式。一个单项式中,所有字母的指数和叫做这个单项式的次数。一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算 :加减运算时,如果遇到括号先去括号,再合并同类项。幂的运算 :AM+AN=A (M+N)(AM)N=A (MN )(A/B)N=AN/BN 除法一样。整式的乘法:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。单项式与多项式相乘, 就是根据 分配律 用单项式去乘多项式的每一项,再
6、把所得的积相加。多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。公式两条 :平方差公式: A2-B2=(A+B)(A-B) ;完全平方公式: (A+B)2=A2+2AB+B2;(A-B)2=A2-2AB+B2。整式的除法 :单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。方法: 提公因式法、运用公式法、分组分解法、十字相乘法。分式: 整
7、式 A 除以整式 B,如果除式 B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。分式的分子与分母同乘以或除以同一个不等于0 的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。加减法:同分母分式相加减,分母不变,把分子相加减。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 12 页 - - - - - - - - - - 学习必备欢迎下载异分母的分式先通分,化为同分母的分式,再加减。分式方程
8、:分母中含有未知数 的方程叫分式方程。使方程的分母为 0 的解称为原方程的 增根。B、方程与不等式1、方程与方程组一元一次方程: 在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。等式两边同时加上或减去或乘以或除以(不为 0) 一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。二元一次方程: 含有两个未知数, 并且所含未知数的项的次数都是1 的方程叫做二元一次方程。二元一次方程组 :两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方
9、程的公共解,叫做这个二元一次方程组的解。解二元一次方程组的方法:代入消元法;加减消元法。一元二次方程 :只有一个未知数,并且未知数的项的最高系数为2 的方程:ax2+bx+c=0 ;1)一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等, 其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当Y=0 的时候就构成了一元二次方程了。那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图像与 X轴的交点。也就是该方程的解了2)一元二次方程的解法大家知道,二次函数有顶点式 (-b/2a ,4ac
10、-b2/4a ),这大家要记住, 很重要,因为在上面已经说过了, 一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出所有的一元一次方程的解(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解(2)分解因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解(3)公式法这方法也可以是在解一元二次方程的万能方法了,方程的根X1=-b+b 2-4ac)/2a ,X2=-b-b 2-4ac)/2a 3)解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边, 再把二次项的系数化为1,再同时加上
11、 1 次项的系数的一半的平方,最后配成完全平方公式(2)分解因式法的步骤:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 12 页 - - - - - - - - - - 学习必备欢迎下载把方程右边化为 0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为b,常数项的系数为c 4)韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/
12、a,二根之积=c/a 也可以表示为 x1+x2=-b/a,x1x2=c/a 。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用5)一元二次方程根的情况利用根的判别式去了解, 根的判别式可在书面上可以写为“ ” ,读作“diao ta ”,而 =b2-4ac ,这里可以分为3 种情况:I 当 0 时,一元二次方程有2 个不相等的实数根;II 当 =0 时,一元二次方程有2 个相同的实数根;III 当 B,则 A+CB+C ;在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如: 如果 AB,则 A-CB-C ;在不等式中,如果乘以同一个正数,不等式符号不改向;例如:
13、 如果 AB,则 A*CB*C (C0);在不等式中,如果乘以同一个负数,不等号改向;精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 12 页 - - - - - - - - - - 学习必备欢迎下载例如: 如果 AB,则 A*CB*C (C0);如果不等式乘以 0,那么不等号改为等号;所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘的数就不等于0,否则不等式不成立;3、函数变量:因变量 Y,自变量 X。在用图像表示变量之间的关系时,通常用水平方向
14、的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。一次函数 :若两个变量 X,Y 间的关系式可以表示成Y=KX+B (B 为常数, K不等于 0)的形式,则称Y 是 X 的一次函数。当 B=0 时,称 Y 是 X 的正比例函数。一次函数的图像 :把一个函数的自变量X 与对应的因变量 Y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图像。正比例函数 Y=KX 的图像是经过原点的一条直线。在一次函数中,当K0,BO 时,则经 234 象限;当 K0,B0 时,则经 124 象限;当 K0,B0 时,则经 134 象限;当 K0,B0 时,则经
15、123 象限。当 K0 时,Y 的值随 X 值的增大而增大,当X0 时,Y 的值随 X 值的增大而减少。二 空间与图形A、图形的认识1、点,线,面点,线,面 :图形是由点,线,面构成的。面与面相交得线,线与线相交得点。点动成线,线动成面,面动成体。展开与折叠: 在棱柱中, 任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线, 棱柱的所有侧棱长相等, 棱柱的上下底面的形状相同,侧面的形状都是长方体。N 棱柱就是底面图形有N 条边的棱柱,上下底面就是N 边形。截一个几何体: 用一个平面去截一个图形,截出的面叫做截面。视图: 主视图,左视图,俯视图。多边形: 他们是由一些不在同一条直线上的线段依
16、次首尾相连组成的封闭图形。弧、扇形: 由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。圆可以分割成若干个扇形。2、角线:线段有两个端点。将线段向一个方向无限延长就形成了射线。射线只有一个端点。将线段的两端无限延长就形成了直线。直线没有端点。经过两点有且只有一条直线。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 12 页 - - - - - - - - - - 学习必备欢迎下载比较长短: 两点之间的所有连线中,线段最短。两点之间直线最短。两点之间线段的长度,叫做这两点之间的距离。角的度
17、量与表示: 角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的 1/60 是一分,一分的 1/60 是一秒。即: 60 分为 1度,60 秒为 1 分。角的比较 :角也可以看成是由一条射线绕着他的端点旋转而成的。一条射线绕着他的端点旋转, 当终边和始边成一条直线时, 所成的角叫做平角,180。 始边继续旋转,当他又和始边重合时, 所成的角叫做周角 ,360。从一个角的顶点引出的一条射线,把这个角分成两个相等的角, 这条射线叫做这个角的平分线。平行:同一平面内,不相交的两条直线叫做平行线。经过直线外一点,有且只有一条直线与这条直线平行。如果两条直线都与第3 条直线平行,那么
18、这两条直线互相平行。垂直: 如果两条直线相交成直角,那么这两条直线互相垂直。互相垂直的两条直线的交点叫做垂足。平面内,过一点有且只有一条直线与已知直线垂直。垂直平分线: 垂直和平分一条线段的直线叫垂直平分线。垂直平分线垂直平分的一定是线段,不能是射线或直线, 这根据射线和直线可以无限延长有关, 再看后面的, 垂直平分线是一条直线, 所以在画垂直平分线的时候,确定了 2 点后(关于画法,后面会讲)一定要把线段穿出2 点。垂直平分线定理:性质定理:在垂直平分线上的点到该线段两端点的距离相等;判定定理:到线段2 端点距离相等的点在这线段的垂直平分线上;角平分线:把一个角平分的射线叫该角的角平分线。定
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年初中数学知识点总结公式总结 2022 年初 数学 知识点 总结 公式
限制150内