《基于改进后冲击波剖面模型的宏观基本图特性研究-王福建.pdf》由会员分享,可在线阅读,更多相关《基于改进后冲击波剖面模型的宏观基本图特性研究-王福建.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第33卷第4期2016年4月公路交通科技Journal of Highway and Transportation Research and DevelopmentVol 33 No 4Apr. 2016收稿日期: 2015 -05 -14基金项目:国家自然科学基金项目(51278455)作者简介:王福建(1969 - ),男,安徽阜阳人,副教授 (ciewfj zju edu cn)doi: 10 3969/ j issn 1002 -0268 2016 04 020基于改进后冲击波剖面模型的宏观基本图特性研究王福建1,孙凌涛1,钱伟2(1.浙江大学建筑工程学院,浙江杭州310058, 2.
2、杭州华龙交通勘察设计有限公司,浙江杭州310058)摘要:冲击波剖面模型是动态追踪交叉口排队和队列消散过程的一种模型,对其建模过程进行了改进,使其更符合实际交通流的运行情况。在此基础上,对含有5个信号交叉口的干线进行了数值仿真,在不断改变其交通需求的情况下,得到了干线输出流量和干线内累积车辆数的值。研究发现:干线输出流量和干线内累积车辆数存在一定的固定关系,从而验证了宏观基本图的存在性,为后续宏观基本图的研究和应用提供了一种快速准确的方法和一定的理论基础。关键词:交通工程;宏观基本图;数值仿真; SPM;干线;数值仿真中图分类号: U491 文献标识码: A 文章编号: 1002 -0268
3、(2016) 04 -0127 -07Characteristics of Macroscopic Fundamental Diagram Based on SPMWANG Fu-jian1, SUN Ling-tao1, QIAN Wei2(1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou Zhejiang 310058, China;2. Hangzhou Hualong Traffic Survey and Design Co. , Ltd. , Hangzhou Zhejian
4、g 310058, China)Abstract: Shockwave profile model is a model that can dynamically track the process of queue build-up anddissipation at intersection. The modeling process is improved to make it more consistent with the actualoperation of traffic flow. On this basis, a numerical simulation to an arte
5、rial road which contains 5 signalintersections is conducted, the output traffic volume and the cumulative number of vehicles in the arterial roadwhen changing the traffic demand are obtained. It is found that there is existence of certain relationshipbetween the abovementioned 2 parameters, which ve
6、rified the existence of macroscopic fundamental diagram.It provided a fast accurate method and a certain theoretical basis for further study and application of MFD.Key words: traffic engineering; macroscopic fundamental diagram ( MFD ); numerical simulation;shockwave profile model (SPM); arterial; n
7、umerical simulation0引言随着社会经济的发展和人民生活水平的提高,逐渐增加的汽车使用量使得交通状态从交通拥挤不断向交通拥堵演化,使其成为亟待解决的关键问题之一。交通堵塞现象往往在某些敏感交叉口或路段反映出来,其原因就是在某一时段的大多数周期内,交通需求大于交通供给,导致车辆在绿灯时间内未能完全释放且不断累积,最终排队上溯导致上游交叉口发生堵塞,从而形成连锁反应,以致断面和基本路段的交通流特性无法适用。因此需要建立合适的能准确快速描述车辆排队现象的排队模型,并以此来研究路网的宏观交通流特性(即宏观基本图)。1研究现状1 1排队模型研究现状排队模型大致可分为3类:概率论方法1 -
8、2、累积曲线法3 -4和冲击波法5 -9。其中概率方法因公路交通科技第33卷为其无法满足任何一种概率分布的假设,无法适用于交通状态变化复杂的情况。当到达率和离开率变化复杂时,累积曲线法较难构建累计曲线,且存在一定的累计误差。因此本文选择在宏观上可以看做稳定流情形的、有较好描述效果的冲击波法进行研究。在冲击波法应用于信号交叉口分析的研究中,Michalopoulos等5将冲击波分析应用于信号交叉口,针对单个交叉口和交叉口群分别研究了具有排队长度约束的过饱和信号系统,特别关注了排队的动态变化和信号控制效果。 Stephanopoulos等6进一步运用冲击波方法探讨了信号交叉口交通排队动力学的建模和
9、分析。隽志才等7以交通流流体力学理论为基础,采用准冲击波的方法对冲击波在交叉口的传递情况以及排队过程进行了模拟,并利用仿真结果计算得到了交叉口最大排队长度、最远排队点、交叉口平均受阻距离、停车率等指标。但以上方法都不适用于过饱和的情形。 Wu等8基于冲击波理论,提出了一种基于段落的干线交通流动态性的建模方法,称为冲击波剖面模型,以拥有不变饱和流率的相同类型路段作为一个段落,追踪一个段落内或相邻两个段落内的主要冲击波,以此来描述交叉口动态排队过程,并用实际数据进行了验证。付凤杰等9应用冲击波法对信号交叉口排队长度最远点进行了分析研究,并建立了最大周期的优化模型。1 2宏观基本图研究现状Smeed
10、10于1966年提出了能够进入城市中心区的车辆数是城市区域面积的函数,并与该城市的路网面积与道路可利用率相关。 Herman11提出了二流模型,将路网上的车辆假设为自由流行驶和停止两种状态,得到单位距离车辆平均停车时间与平均行程时间的函数关系。在以上研究的基础上, Daganzo和Geroliminis12 -13得到了路网空间流量、密度等基本交通参数的固定关系,并将此定义为宏观基本图。此后,围绕宏观基本图的研究不断展开14 -17,研究内容主要集中在其存在性、形状、影响因素及运用方向,且大多数研究都是基于Vissim仿真或以往的历史数据, Vissim仿真中参数标定的准确性直接影响结果的可靠
11、性,而历史数据又存在一定的滞后性,因此本文旨在研究一种能快速准确得到宏观基本图的方法,为后续研究提供一定的理论基础18 -19。2冲击波剖面模型介绍及改进冲击波剖面模型( Shockwave Profile Model,SPM)8是冲击波法在交叉口的具体应用,模型基于以下假设: (1)车辆在到达排队队尾前都以自由流速度行驶; (2)排队车辆以饱和流率释放; (3)消散冲击波波速已知。如图1所示,该模型合理地将冲击波简化为红灯起亮初期形成排队的排队冲击波w1、绿灯起亮后形成的由停车线向后传播的消散冲击波w2、排队波和消散波相遇时形成的离去波w3和周期内有剩余排队形成的压缩波w4这4种主要的波,可
12、方便地追踪信号交叉口间排队形成与消散的过程。图1信号交叉口冲击波剖面图Fig 1 Profile of shockwave at signalized intersection2 1路段建模SPM模型依据流量守恒定律和LWR模型中的波速公式,推导出4种冲击波的波速公式:w1(t) =- qn-1 t - Ln - lwn(t)vf nj - qn-1 t - Ln - lwn(t)vf / vf,若On(t) + rn(t) t 0;min qn-1 t - Lnvf,Sn+1 , 若On(t) +rn(t) t 0;minScft - q cftn (t),qn-1(t - Lnvf),Sn
13、+1,若On(t) + rn(t) t On(t) +rn(t) + gn(t)且lwn(t) = 0,(9)式中Scft, q cftn (t)分别为存在冲突流时交叉口的饱和流率和离开流率。对于未保护相位交叉口,由于冲突流的存在,其实际饱和流率会小于理论饱和流率,因此需要修正,修正公式如下:SAn (t) = minScft - q cftn (t), Sn。 (10)在得到上游交叉口的输出流率后,只要给出一个转弯比例就能知道下游交叉口直行的交通量,计921公路交通科技第33卷算公如下:qn(t) =q mn (t),若On(t) t On(t) + rn(t);n q n(t),若On(t
14、) + rn(t) t On(t) +rn(t) + gn(t),(11)式中q mn (t)是支路的离开率(包括左转和右转)。以上讨论的都是下游交叉口未溢出的情形,但现实中常常出现下游排队上溯的情形,因此还需对此情形进行讨论。由于溢出的不确定性和随机性(溢出何时发生、溢出状态持续的时间等)使情况变得相当复杂,但SPM模型能将其简单归纳成两种情况:情况1:增加一个红灯相位,该情况适用于下游交叉口在上游交叉口是红灯时下游交叉口溢出且溢出状态持续到信号灯变绿;情况2:创建一个新周期,其适用于上游交叉口是绿灯时下游交叉口溢出的情况。由于排队溢出的情形能简单地被上述两种情况表示,因此对于排队溢出情形的
15、处理就可以简化为在以下时段更新交叉口信号的时间: (1)下游交叉口排队上溯至上游交叉口; (2)下游交叉口的消散波传到上游交叉口。然而, SPM模型在每个时刻t内更新交通状态,当溢出发生时,无法知道溢出持续的时间。为了建模简便,将溢出发生时周期内剩余的时间作为红灯时间,将溢出消散时周期内剩余的时间作为绿灯时间,更新时间公式如下:若lwn+1(t) Ln+1 lwn+1(t + t)或lw4n+1(t) Ln+1 lw4n+1(t + t),则:On(t + t) = trn(t + t) = On(t) + rn(t) + gn(t) - t;gn(t + t) = 0若lw2n+1(t) L
16、n+1 lw2n+1(t + t),则:On(t + t) = trn(t + t) = maxOn(t) + rn(t) - t,0gn(t + t) =On(t) + rn(t) + gn(t) - rn(t + t) - t 。(12)2 2路网建模SPM模型采用基于段落的路网建模方法,把拥有不变饱和流率的相同类型路段归为一个段落,一个段落或两个相邻段落产生的主要冲击波会被明确地追踪。如图2所示,以节点表示段落,以箭头表示方向,其中节点包括段落长度、阻塞密度、饱和流率、信号配时等大部分数据。LUn -路段未渠化段长度; LAn -左转渠化段长度; LBn -直行渠化段长度; LV1n -
17、堵塞的车道长度; LV2n -未堵塞的车道长度; -虚拟节点。图2含有渠化区的交叉口建模Fig 2 Modeling of an intersection with channelized area基于段落的建模方法是现实交通的近似模拟,因此假设车道事先已分配好,无换道行为,进入各路段的流量qV1n (t), qV2n (t)由转弯比例决定,其公式如下:qV1n (t) = (1 - n) qn-1(t)qV2n (t) = n qn-1(t), (13)式中n为n路段的左转比例。从式(13)可以看出,原模型将最内侧车道完全作为左转车辆的专用车道,这不仅大大降低了交叉口的通行能力,还与实际完全
18、不符,因此需要对其进行改进。2 3模型的改进按实际情况常规设置,将最内侧车道作为直行车辆和左转车辆的共用车道,外侧车道作为直行车辆和右转车辆的共用车道,故其流量分配按下式进行改进:qV1n (t) = n qn-1(t) + (1 - n - n)qn-1(t) /2qV2n (t) = n qn-1(t) + (1 - n - n)qn-1(t) /2,(14)式中n为n路段的左转比例和右转比例。3仿真应用及分析3 1仿真试验环境根据上一章的介绍和改进后的SPM算法,对其进行编程实现。以单车道干线5个交叉口为研究对象,路段长度均为300 m,研究对象如图3所示。031第4期王福建,等:基于改
19、进后SPM模型的宏观基本图特性研究图3试验对象的仿真设置Fig 3 Experimental object configuration for simulation路段的自由流速度为36 km/ h,饱和流率均为1 800 veh/ h,饱和密度(临界密度)为65 veh/ km,阻塞密度为130 veh/ km,交叉口内的车辆初始排队数为0,在交叉口边界输入双峰流量,其中主路最大流量为1 000 veh/ h,支路最大流量为600 veh/ h,其双峰变化如图4所示。图4日交通量变化图Fig 4 Changes of daily traffic volume各交叉口均为两相位放行,周期为10
20、0 s,绿信比为0 55,交叉口3的相位差为10 s,交叉口4的相位差为20 s,其余交叉口无相位差。3 2仿真结果及分析对1天24 h进行数值仿真,得到主干道各交叉口1天由左向右直行的冲击波图,结果如图5所示。从图5可以看出,在7:30以后各交叉口均出现拥挤现象。以交叉口5为例, 8:00以后交叉口5出现排队上溯现象,影响交叉口4的车流运行,从而使整个交叉口都出现上溯,若为路网,则会出现锁死现象。对路网进行1天24 h仿真,得到仿真时间段内每个仿真时刻进出各交叉口的车辆数,然后以5 min为时间间隔进行统计(部分数据如表1所示),得到每个统计时间间隔内路段上的累计车辆数。为了防止无边界交叉口
21、对结果造成影响,只取路段L2, L3,L4进行分析,计算每个时间段内的平均路网累积车图5主干道直行方向24 h冲击波剖面图Fig 5 Profiles of shockwave on arterial road in straightdirection (24 hours)辆数,然后根据各路段平均长度,得到路网加权平均密度。从图6可以得出边界输出流量随时间的变化趋势:在低峰时输出流量随着交通需求的增加而变大,到早高峰8:00以后,路网达到临界饱和状态,输出流量达到最大值,状态一直持续到晚高峰结束,符合实际情况。从图7可以发现,干线输出流量与干线内累计车辆数(即密度)存在一定的关系,在密度小于6
22、5 veh/ h时,输出流量与密度呈线性相关,交通流达到临界饱和状态,个别或多个交叉口出现排队上溯现131公路交通科技第33卷表1部分仿真数据示例单位: veh/(5 min)Tab 1 Part of simulation data unit: veh/(5 min)时刻5分钟序列交叉口1输入流量交叉口2输出流量交叉口2输入流量交叉口3输出流量交叉口3输入流量交叉口4输出流量交叉口4输入流量交叉口5输出流量6:00 7:00 78 45.79 50.71 53.21 44.60 48.35 58.90 61.65 48.406:00 7:00 79 45.79 42.20 45.95 50.
23、91 54.41 51.97 55.47 65.986:00 7:00 80 45.79 50.71 53.21 48.60 51.60 54.15 56.90 53.156:00 7:00 81 45.79 42.20 45.95 53.40 56.90 47.70 51.20 56.956:00 7:00 82 45.79 50.71 53.21 39.85 43.60 57.47 60.22 46.976:00 7:00 83 45.79 42.20 45.95 56.76 60.01 52.92 56.42 65.986:00 7:00 84 45.79 50.71 53.21 52.
24、59 55.59 54.62 57.37 54.107:00 8:00 85 63.35 52.23 57.86 54.19 59.81 58.14 63.39 64.367:00 8:00 86 67.44 72.23 75.98 59.28 64.90 78.81 82.94 69.457:00 8:00 87 67.44 62.79 68.42 90.00 94.50 67.05 72.30 74.087:00 8:00 88 67.44 72.23 75.98 70.66 75.54 80.00 83.08 75.007:00 8:00 89 67.44 62.79 68.42 63.
25、49 68.59 71.00 74.75 75.007:00 8:00 90 67.44 72.00 75.75 51.00 52.58 71.50 74.43 75.007:00 8:00 91 67.44 55.00 58.98 59.00 63.05 71.00 74.75 75.007:00 8:00 92 23.19 20.00 21.58 48.50 53.75 71.50 74.43 75.007:00 8:00 93 31.29 47.00 51.91 72.00 77.44 71.00 74.75 75.007:00 8:00 94 57.08 60.50 62.38 50.
26、50 52.83 71.50 74.43 75.007:00 8:00 95 64.06 54.00 59.59 59.00 61.74 71.00 74.75 75.007:00 8:00 96 15.00 14.00 14.83 48.00 53.63 71.50 74.43 75.008:00 9:00 97 30.55 39.50 44.90 73.00 79.05 70.00 75.00 75.00 图6边界输出流量随时间变化图Fig 6 Boundary output traffic volume varying with time图7输出流量和密度关系图Fig 7 Relatio
27、nship between output traffic volume and density象。当密度大于65 veh/ h时,交通流达到饱和状态,表现为输出流量最大。由上述分析可见,宏观基本图能清楚地描述干线从通畅到拥挤直至拥堵的全过程。由此可见,可以利用宏观基本图来确定路网车辆总数,使其不会导致网络交通到达锁死状态,同时,确保网络车辆总数达到最大值附近。4结论本文利用改进后的SPM模型快速准确地追踪了过饱和交叉口的动态排队过程,并以此得到了交通需求不断变化情况下的路网输出流量和累积车辆数。利用该数据,得出输出流量和累积车辆数之间存在确定的关系,验证了宏观基本图的存在性,为后续宏观基本图的
28、应用提供了一定的理论基础。参考文献:References:1 KIMBER R, HOLLIS E. Traffic Queues and Delays atRoad Junctions R. Berkshire: Transport and Road231第4期王福建,等:基于改进后SPM模型的宏观基本图特性研究Research Laboratory, 1979.2 NEWELL G F. Applications of Queuing Theory M.New York: Chapman and Hall, 1982.3 MAY A D. Traffic Flow Fundamentals
29、 M. New Jersey:Prentice-Hall, Inc, 1990.4 DAGANZO C F. Fundamentals of Transportation andTraffic Operations M. Oxford: Pergamon Press, 1997.5 MICHALOPOULOS P G, STEPHANOPOULOS G.Oversaturated Signal Systems with Queue LengthConstraints J . Transportation Research, 1977, 11(6): 413 -428.6 STEPHANOPOU
30、LOS G, MICHALOPOULOS P G,STEPHANOPOULOS G. Modelling and Analysis of TrafficQueue Dynamics at Signalized Intersections J .Transportation Research Part A: General, 1979, 13 (5):295 -307.7 隽志才,魏丽英,李江.信号交叉口排队长度宏观模拟的自适应分析法J.中国公路学报, 2000, 13(1): 77 -80. JUAN Zhi-cai, WEI Li-ying, LI Jiang. An AdaptiveMac
31、ro-simulation Method on Queuing Length at SignalizedIntersection J . China Journal of Highway andTransport, 2000, 13 (1): 77 -80.8 WU X, LIU H X. A Shockwave Profile Model for TrafficFlow on Congested Urban Arterials J. TransportationResearch Part B: Methodological, 2011, 45 ( 10 ):1768 -1786.9 王殿海,
32、付凤杰,蔡正义,等.基于排队最远点约束的最大周期时长优化方法J.华南理工大学学报:自然科学版, 2014, 42 (5): 67 -74.WANG Dian-hai, FU Feng-jie, CAI Zheng-yi, et al.Optimization Method of Maximum Cycle Length Based onBack of Queue J. Journal of South China University ofTechnology: Natural Science Edition, 2014, 42 (5):67 -74.10 SMEED R J. The Roa
33、d Capacity of City Centers J.Highway Research Record, 1967 (169): 22 -29.11 HERMAN R, PRIGOGINE I. A Two-fluid Approach toTown Traffic J . Science, 1979, 204 ( 4389 ):148 -151.12 DAGANZO C F. Urban Gridlock: Macroscopic Modelingand Mitigation Approaches J. Transportation ResearchPart B: Methodologic
34、al, 2007, 41 (1): 49 -62.13 GEROLIMINIS N, DAGANZO C F. Macroscopic Modelingof Traffic in Cities C / / Transportation Research Board86th Annual Meeting. Washington, D. C. : TRB, 2007.14姬杨蓓蓓.基于仿真实验验证宏观基本图的存在性J.武汉理工大学学报:交通科学与工程版, 2013,37 (5): 929 -933.JIYANG Bei-bei. Existence Verification of Macrosco
35、picFundamental Diagram ( MFD ) Based on SimulationMethod J. Journal of Wuhan University of Technology:Transportation Science & Engineering Edition, 2013, 37(5): 929 -933.15 GEROLIMINIS N, SUN J. Properties of a Well-definedMacroscopic Fundamental Diagram for Urban Traffic J.Transportation Research P
36、art B: Methodological, 2011, 45(3): 605 -617.16 KNOOP V L, HOOGENDOORN S P, VAN LINT J W C.The Impact of Traffic Dynamics on MacroscopicFundamental Diagram C / / Transportation ResearchBoard 92nd Annual Meeting. Washington, D. C. :TRB, 2013.17朱琳,于雷,宋国华.基于MFD的路网宏观交通状态及影响因素研究J.华南理工大学学报:自然科学版, 2012, 40
37、 (11): 138 -146.ZHU Lin, YU Lei, SONG Guo-hua. MFD-basedInvestigation into Macroscopic Traffic Status of UrbanNetworks and Its Influencing Factors J. Journal ofSouth China University of Technology: Natural ScienceEdition, 2012, 40 (11): 138 -146.18 GEROLIMINIS N, DAGANZO C F. Existence of Urban-scale Macroscopic Fundamental Diagrams: SomeExperimental Findings J. Transportation Research PartB: Methodological, 2008, 42 (9): 759 -770.19 DAGANZO C F. Urban Gridlock: Macroscopic Modelingand Mitigation Approaches J. Transportation ResearchPart B: Methodological, 2007, 41 (1): 49 -62.331
限制150内