2022年导数知识点归纳及应用1 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022年导数知识点归纳及应用1 .pdf》由会员分享,可在线阅读,更多相关《2022年导数知识点归纳及应用1 .pdf(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、导数知识点归纳及应用一、相关概念1导数的概念略二、导数的运算1基本函数的导数公式: 0;C(C为常数)1;nnxnx(sin)cosxx; (cos )sinxx; ();xxee()lnxxaaa; 1ln xx; 1lglogaaoxex. 例 1:下列求导运算正确的是 ( ) A (x+211)1xx B(log2x) =2ln1x C(3x) =3xlog3e D (x2cosx) =-2xsinx 2导数的运算法则法则 1:(.)vuvu法则 2:.)(uvvuuv若 C为常数 , 则.)(CuCu法则 3:vu2vuvvu(v0) 。3. 复合函数的导数形如 y=fx()的函数称为
2、复合函数。复合函数求导步骤:分解 求导 回代。法则: y|X= y |U u|X或者 ( )()*( )fxfx. 练习: 求下列各函数的导数:(1);sin25xxxxy(2));3)(2)(1(xxxy(3);4cos212sin2xxy(4).1111xxy三、导数的几何意义精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 13 页 - - - - - - - - - - 函数 y=f (x)在点 x0处的导数的几何意义是曲线y=f (x)在点 p( x0,f (x0) )处的切线的斜率。
3、也就是说,曲线 y=f (x)在点 p(x0,f (x0) )处的切线的斜率是f (x0) 。相应地,切线方程为yy0=f/(x0) (xx0) 。例:曲线3( )2f xxx=+-在0p处的切线平行于直线41yx=-,则0p点的坐标为()A(1,0)B(2,8)C(1,0)和( 1, 4)D(2,8)和( 1, 4)四、导数的应用1. 函数的单调性与导数(1)如果f)(x0,则)(xf在此区间上为增函数;如果f0)(x,则)(xf在此区间上为减函数。(2)如果在某区间内恒有f0)(x,则)(xf为常数 。例:函数13)(23xxxf是减函数的区间为( ) A),2(B)2,( C )0,(
4、D (0,2)2极点与极值:曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负; 曲线在极小值点左侧切线的斜率为负,右侧为正;例:函数, 93)(23xaxxxf已知3)(xxf在时取得极值,则a= ( ) A2 B3 C4 D5 3最值:在区间 a ,b 上连续的函数f)(x在a ,b 上必有最大值与最小值。但在开区间(a,b)内连续函数f (x)不一定有最大值,例如3( ),( 1,1)f xxx。函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的。函数的极值可以有多有少,但最值只有一个,极值只能在区
5、间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点处必定是极值。例: 函数13)(3xxxf在闭区间 -3 ,0 上的最大值、最小值分别是_. 精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 13 页 - - - - - - - - - - (数学选修1-1 )第一章导数及其应用 基础训练组 一、选择题3函数3yxx=+的递增区间是()A),0( B) 1 ,( C),( D), 1(432( )32f xaxx, 若( 1)4f, 则a
6、的值等于()A319 B316 C313 D3106函数344xxy在区间2,3上的最小值为()A72 B36 C12 D0二、填空题1若30( ),()3f xxfx,则0 x的值为 _;2曲线xxy43在点(1, 3)处的切线倾斜角为_;3函数sin xyx的导数为 _;4曲线xyln在点( ,1)M e处的切线的斜率是_,切线的方程为_;5函数5523xxxy的单调递增区间是_。三、解答题1求垂直于直线2610 xy并且与曲线3235yxx相切的直线方程。3求函数543( )551f xxxx在区间4, 1上的最大值与最小值。4已知函数23bxaxy,当1x时,有极大值3;(1)求,a
7、b的值; (2)求函数y的极小值。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 13 页 - - - - - - - - - - 经典例题选讲例 1.已知函数)(xf xy的图象如图所示(其中)(xf是函数)(xf的导函数),下面四个图象中)(xfy的图象大致是 ( ) 例2. 已 知 函 数daxbxxxf23)(的 图 象 过 点P( 0,2 ) , 且 在 点M)1(, 1(f处 的 切 线 方 程 为076yx. ()求函数)(xfy的解析式;()求函数)(xfy的单调区间 . 例
8、4.设函数32()fxxbxcx xR,已知( )( )( )g xfxfx是奇函数。()求b、c的值。()求( )g x的单调区间与极值。例 5.已知 f (x)=cbxaxx23在 x=1,x=32时,都取得极值。求a、b的值。例 7:已知函数22( )(23 )(),xf xxaxaa exR其中aR(1)当0a时,求曲线( )(1 ,(1)yf xf在点处的切线的斜率;(2)当23a时,求函数( )f x的单调区间与极值。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 13 页 - -
9、 - - - - - - - - 导数知识点归纳及应用教师一、相关概念1导数的概念略二、导数的运算1基本函数的导数公式: 0;C(C为常数)1;nnxnx(sin)cosxx; (cos )sinxx; ();xxee()lnxxaaa; 1ln xx; 1lglogaaoxex. 例 1:下列求导运算正确的是 ( ) A (x+211)1xx B(log2x) =2ln1x C(3x) =3xlog3e D (x2cosx) =-2xsinx 解析 :A错, (x+211)1xx B正确, (log2x) =2ln1xC错, (3x)=3xln3 D错, (x2cosx) =2xcosx+
10、x2(-sinx) 2导数的运算法则法则 1:(.)vuvu法则 2:.)(uvvuuv若 C为常数 , 则.)(CuCu法则 3:vu2vuvvu(v0) 。3. 复合函数的导数形如 y=fx()的函数称为复合函数。复合函数求导步骤:分解 求导 回代。法则: y|X= y |U u|X或者 ( )()*( )fxfx. 练习: 求下列各函数的导数:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 13 页 - - - - - - - - - - (1);sin25xxxxy(2));3)(2)
11、(1(xxxy(3);4cos212sin2xxy(4).1111xxy解: (1) ,sinsin23232521xxxxxxxxyy.cossin2323)sin()()(232252323xxxxxxxxxx(2)y=(x2+3x+2) (x+3)=x3+6x2+11x+6, y=3x2+12x+11. (3)y=,sin212cos2sinxxx.cos21)(sin21sin21xxxy(4)xxxxxxxy12)1)(1(111111,.)1 (2)1()1(21222xxxxy四、导数的几何意义函数 y=f (x)在点 x0处的导数的几何意义是曲线y=f (x)在点 p( x0,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022年导数知识点归纳及应用1 2022 导数 知识点 归纳 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内