现代控制理论课件ppt课件.ppt
《现代控制理论课件ppt课件.ppt》由会员分享,可在线阅读,更多相关《现代控制理论课件ppt课件.ppt(162页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、控制系统的状态空间分析与综合2引引 论论v经典控制理论经典控制理论: : 数学模型数学模型: :线性定常高阶微分方程和传递函数; 分析方法分析方法: : 时域法(低阶13阶) 根轨迹法 频域法 适应领域适应领域: :单输入单输出(SISO)线性定常系统 缺缺 点点: :只能反映输入输出间的外部特性,难以揭示系统内部的结构和运行状态。v现代控制理论:现代控制理论: 数学模型数学模型: :以一阶微分方程组成差分方程组表示的动态方程 分析方法分析方法: :精准的时域分析法 适应领域适应领域:(:(1 1)多输入多输出系统(MIMO、SISO、MISO、SIMO) (2 2)非线性系统 (3 3)时变
2、系统 优越性:优越性:(1 1)能描述系统内部的运行状态 (2 2)便于考虑初始条件(与传递函数比较) (3 3)适用于多变量、非线性、时变等复杂大型控制系统 (4 4)便于计算机分析与计算 (5 5)便于性能的最优化设计与控制 内容:内容:线性系统理论、最优控制、最优估计、系统辨识、自适应控制近似分析3第一章 控制系统的状态空间描述第二章 线性系统的运动分析第三章 控制系统的李雅普诺夫稳定性分析第四章 线性系统的可控性和可观测性第五章 线性系统非奇异线性变换及系统的规范分解第六章 线性定常控制系统的综合分析4v1.1 1.1 系统数学描述的两种基本方法系统数学描述的两种基本方法 v1.2 1
3、.2 状态空间描述常用的基本概念状态空间描述常用的基本概念v1.3 1.3 系统的传递函数矩阵系统的传递函数矩阵 v1.4 1.4 线性定常系统动态方程的建立线性定常系统动态方程的建立第一章 控制系统的状态空间5 典 型 控 制 系 统 方 框 图执行器被控对象传感器控制器控制输入观测y控制u被控过程x反馈控制 被 控 过 程puuu21nxxx,21qyyy21 1.1 1.1 系统数学描述的两种基本方法系统数学描述的两种基本方法6 典型控制系统典型控制系统由被控对象、传感器、执行器和控制器组成。 被控过程被控过程具有若干输入端和输出端。 数学描述方法数学描述方法: 输入输出描述输入输出描述
4、(外部描述):高阶微分方程、传递函数矩阵。 状态空间描述状态空间描述(内部描述):基于系统内部结构,是对系统的一种完整的描述。71)输入:输入:外部对系统的作用(激励); 控制:控制:人为施加的激励; 输入分控制与干扰。1)输出:输出:系统的被控量或从外部测量到的系统信息 。若输出是由传感器测量得到的,又称为观测观测。2)2)状态、状态变量和状态向量状态、状态变量和状态向量 :能完整描述和唯一确定系统时域行为或运行过程的一组独立(数目最小)的变量称为系统的状态;其中的各个变量称为状态变量。当状态表示成以各状态变量为分量组成的向量时,称为状态向量。3)3)状态空间状态空间:以状态向量的各个分量作
5、为坐标轴所组成的n维空间称为状态空间。4)状态轨线:状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态轨线或状态轨迹。 5)状态方程:状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称为系统的状态方程,它不含输入的微积分项。一般情况下,状态方程既是非线性的,又是时变的,可以表示为 6)输出方程:输出方程:描述系统输出变量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,当输出由传感器得到时,又称为观测方程。输出方程的一般形式为7)动态方程:动态方程:状态方程与输出方程的组合称
6、为动态方程,又称为状态空间表达式 。一般形式为( )( ), ( ),x tf x t u t t( )( ), ( ),y tg x t u t t1.2 1.2 状态空间描述常用的基本概念状态空间描述常用的基本概念8或离散形式 ( )( ),( ),( )( ),( ),x tfx tu tty tgx tu tt1()( ), ( ),( )( ), ( ),kkkkkkkkx tfx tu tty tg x tu tt9)线性系统:线性系统:线性系统的状态方程是一阶向量线性微分或差分方程,输出方程是向量代数方程。线性连续时间系统动态方程的一般形式为10)线性定常系统:线性定常系统:线性
7、系统的A,B,C,D或G,H,C,D中的各元素全部是常数。即 ( )( ) ( )( ) ( )y(t)C(t)x(t)D(t)u(t)x tA t x tB t u t(t)Ax(t)Bu(t)y(t)Cx(t)Du(t)x 或离散形式(1)( )( )( )( )( )x kGx kHu ky kCx kDu kA xB uyC xD ux 若有9分别写出状态矩阵状态矩阵 A、控制矩阵、控制矩阵 B、输出矩阵、输出矩阵 C、前馈矩阵、前馈矩阵 D :已知:nxxxx21puuuu21qyyyy21nnnnnnaaaaaaaaaA212222111211npnnppbbbbbbbbbB212
8、222111211qnqqnncccccccccC212222111211111212122212ppqqqpddddddDddd 为书写方便,常把连续系统和离散系统分别简记为S(A,B,C,D)和S(G,H,C,D)。 11)11)线性系统的结构图线性系统的结构图 :线性系统的动态方程常用结构图表示。nn图中,I为( )单位矩阵,s是拉普拉斯算子,z为单位延时算子。10v讨论: 1、状态变量的独立性。 2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是唯一的,与状态变量的选取方法无关。 3、动态方程对于系统的描述是充分的
9、和完整的,即系统中的任何一个变量均可用状态方程和输出方程来描述。 例例1 11 1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入电压和输入电流,y为输出电压,xi为电容器电压或电感器电流。 x3x3解解 并非所有电路中的电容器电压和电感器电流都是独立变量。对图8-5(a),不失一般性,假定电容器初始电压值均为0,有11 因此,只有一个变量是独立的,状态变量只能选其中一个,即用其中的任意一个变量作为状态变量便可以确定该电路的行为。实际上,三个串并联的电容可以等效为一个电容。 对图(b) x1 = x2,因此两者相关,电路只有两个变量是独立的,即(x1和x3)或(x
10、2和x3),可以任用其中一组变量如(x2,x3)作为状态变量。13232xcccx13223xcccx12令初始条件为零,对线性定常系统的动态方程进行拉氏变换,可以得到 11( )()( )( )()( )X ssIABU sY sC sIABD U s系统的传递函数矩阵(简称传递矩阵)定义为 DBAsICsG1)()(例例1-21-2 已知系统动态方程为2121212121100110012010 xxyyuuxxxx 试求系统的传递函数矩阵。解解 已知 0,1001,1001,2010DCBA 故 210)2(11201)(11ssssssAsI210)2(111001210)2(1110
11、01)(1ssssssssBAsI1.3 1.3 系统的传递函数矩阵系统的传递函数矩阵131.4 .1 1.4 .1 由物理模型建动态方程由物理模型建动态方程根据系统物理模型建立动态方程1.4 1.4 线性定常系统动态方程的建立线性定常系统动态方程的建立 RLC 电路 例例1-31-3 试列写如图所示RLC的电路方程,选择几组状态变量并建立相应的动态方程,并就所选状态变量间的关系进行讨论。解解 有明确物理意义的常用变量主要有:电流、电阻器电压、电容器的电压与电荷、电感器的电压与磁通。根据独立性要求,电阻器的电压与电流、电容器的电压与电荷、电感器的电流与磁通这三组变量不能选作为系统的状态。 根据
12、回路电压定律eidtCdtdiLRi1 电路输出量 y 为 1cyeidtC 1) 设状态变量为电感器电流和电容器电压,即 则状态方程为ix 1idtCx12eLxLxLRx11211121xCx 输出方程为 2xy14其向量-矩阵形式为 2121211001011xxyeLxxCLCRxx简记为 cxybeAxx式中, 10,01,011,2121cLbCLCRAxxxxxx 2)设状态变量为电容器电流和电荷,即 则有 idtxix21,21212110,01011xxCyeLxxLCLRxx 3)设状态变量 ( 无明确意义的物理量),可以推出 idtCxRiidtCx1,1211x)()(
13、112121exLRxxRCdtdiRxx 2212)(11xyxxRCiCx15其向量-矩阵形式为 2121211001111xxyLRxxRCRCRCLRRCxx可见对同一系统,状态变量的选择不具有唯一性,动态方程也不是唯一的。 例例1-41-4 由质量块、弹簧、阻尼器组成的双输入三输出机械位移系统如图所示,具有力F和阻尼器气缸速度V 两种外作用,输出量为质量块的位移,速度和加速度。试列写该系统的动态方程。 分别为质量、弹簧刚度、阻尼系数;x为质量块位移。 双输入三输出机械位移系统解解 根据牛顿力学可知,系统所受外力F与惯性力m 、阻尼力f( V )和弹簧恢复力 构成平衡关系,系统微分方程
14、如下: 这是一个二阶系统,若已知质量块的初始位移和初始速度,系统在输入作用下的解便可唯一确定,故选择质量块的位移和速度作为状态变量。设 。由题意知系统有三个输出量,设 x x kxFkxVxfxm)( fk,m,xxxx21,xyxxyxxy 32211,16于是由系统微分方程可以导出系统状态方程FkxVxfmxxxx12221)(1 其向量-矩阵形式为 VFmfmxxmfmkxx10010212111223100001001yxFyxVkffymmmm1.4.2 1.4.2 由高阶微分方程建动态方程由高阶微分方程建动态方程1) 1) 微分方程不含输入量的导数项微分方程不含输入量的导数项 :u
15、yayayayaynnnnn001)2(2)1(1)( 选n个状态变量为 有 )1(21,nnyxyxyx11211013232xyuxaxaxaxxxxxxxnnnnn得到动态方程 cxybuAxx17式中 121012100100000100,10000010nnnxxxAbcxxaaaa 系统的状态变量图 2) 2) 微分方程输入量中含有导数项微分方程输入量中含有导数项 :ubububuyayayaynnnnnn01)1(1)(01)1(1)( 一般输入导数项的次数小于或等于系统的阶数n。首先研究情况,为了避免在状态方程中出现输入导数项,可按如下规则选择一组状态变量,设 18其展开式为
16、niuhxxuhyxiii, 3 , 21101uhuhuhyuhxxuhuhuhyuhxxuhuhyuhxxuhyxnnnnnnn1)2(1)1(0)1(112102231011201 式中, 是n个待定常数。是n个。 110,nhhh由上式的第一个方程可得输出方程是n个。 uhxy01其余(n)个状态方程如下 n个。 uhxxuhxxuhxxnnn11232121对式求导,有 :( )( )(1)011(1)( )( )(1)11000011()nnnnnnnnnnnxyh uhuh uaya ya yb ub uh uhuh u19由展开式将 均以 及 u 的各阶导数表示,经整理可得 y
17、yyn,)1(ixuhahahabuhahahbuhahbuhbxaxaxnnnnnnnnnnnnn)()()()(0011110012111)1(0111)(0110令上式中 u 的各阶导数的系数为零,可确定各 h 值01211101110hahabhhabhbhnnnnnn记 0011110hahahabhnnn故 uhxaxaxnnnn110则系统的动态方程为 ducxybuAxx式中 012112100001100001000010hdchhhhbaaaaAnnn20 若输入量中仅含次导数且 ,可将高于次导数项的系数置0,仍可应用上述公式。 nm 1.4 .3 1.4 .3 由系统传递
18、函数建立动态方程由系统传递函数建立动态方程 01111110)()()(asasasbsbsbsbsUsYsGnnnnnnn应用综合除法有 )()()(01110111sDsNbasasasssbsGnnnnnnn 式中, 是直接联系输入、输出量的前馈系数,当G(s)的分母次数大于分子次数时, , 是严格有理真分式,其分子各次项的系数分别为 nb0nb)()(sDsNnnnnnnbabbabbab111111000下面介绍由 导出几种标准型动态方程的方法:1 1) 串联分解串联分解 如图,取z为中间变量,将 分解为相串联的两部分,有 )()(sDsN)()(sDsNzzzyuzazazaznn
19、nnn01)1101)11)((选取状态变量 )1(21,nnzxzxzx)()(sDsN21则状态方程为 1223(1)01101121nnnnnxxxxxa za zazua xa xaxu 输出方程为 nnxxxy12110其向量-矩阵形式 cxybuAxx式中, naaaaA2101000010000101000b110nc当 具有以上形状时, 阵称为友矩阵,相应的状态方程则称为可控标准型。 bA和A0121n时, 的形式不变, bA和000c22 当 时, 不变,)()()(sDsNbsGncbA,ubcxyn当 时,若按下式选取状态变量 0nbTocAA Toccb Tocbc 式
20、中,T为转置符号,则有1210100010001000naaaaA110nb100c注意注意 的形状特征。若动态方程中的 具有这种形式,则称为可观测标准型。自行证明证明:可控标准型和可观测标准型是同一传递函数的不同实现。可控标准型和可观测标准型的状态变量图如图 :cA,cA, (对偶关系 ) 可控标准型状态变量图 可观测标准型状态变量图 23例例1-61-6 设二阶系统微分方程为 ,试列写可控标准型、可观测标准型动态方程,并分别确定状态变量与输入,输出量的关系。 解解 系统的传递函数为 21221)()()(nssTssUsYsG21221)()()(nssTssUsYsG于是,可控标准型动态
21、方程的各矩阵为21cccxxx2102cA10cbTcc1由G(s)串联分解并引入中间变量z有 22zzzuyTzz对y求导并考虑上述关系式,则有 TuTzzTzzTy2)21 ( 令 可导出状态变量与输入,输出量的关系;,1zxc,2zxc)21 ()()21 ()21 (22222221TTTuTyyxTTuTyyTxcc可观测标准型动态方程中各矩阵为 22yyyTuu21oooxxx2102oATbo110oc24状态变量与输入,输出量的关系为 122ooxyyTuxy该系统的可控标准型与可观测标准型的状态变量图 : (a)可控标准型实现 (b)可观测标准型实现2 2) 只含单实极点时的
22、情况只含单实极点时的情况 当 只含单实极点时,动态方程除了可化为可控标准型或可观测标准型以外,还可化为对角型动态方程,其A阵是一个对角阵。设D(s)可分解为 D(s)= 式中, 为系统的单实极点,则传递函数可展成部分分式之和 )()(sDsN)()(sDsN)()(21nsssn,211( )( )( )( )niiicY sN sU sD ss25而 ,为 在极点 处的留数,且有Y(s)= U(s)iiisssDsNc)()()()()(sDsNiniiisc1若令状态变量 其反变换结果为 )(1)(sUssXiini, 2 , 11( )( )( )( )( )iiiniiixtxtu t
23、y tc xt展开得 11 12221 122nnnnnxxuxxuxxuyc xc xc x其向量-矩阵形式为 (其状态变量如图(a)所示 )11122301101nnnxxxxuxx 1212nnxxycccx26若令状态变量则 Y(s)= )()(sUscsXiiiniisX1)(进行反变换并展开有 11 11222212nnnnnxxc uxxc uxxc uyxxx其向量-矩阵形式为 1111223200nnnnxxcxxcuxxc131 11nxxyx其状态变量图如图(b)所示 ,两者存在对偶关系 对角型动态方程状态变量图 如下:27 (a) (b) 对角型动态方程状态变量图 3
24、3) 含重实极点时的情况含重实极点时的情况 当传递函数除含单实极点之外还含有重实极点时,不仅可化为可控标准型或可观测标准型,还可化为约当标准型动态方程,其A阵是一个含约当块的矩阵。设D(s)可分解为 D(s)= 式中 为三重实极点, 为单实极点,则传递函数可展成为下列部分分式之和: )()(sDsN)()()(431nsss1n,4131112321111( )( )( )( )()()niiiccY sN sccU sD sssss28其状态变量的选取方法与之含单实极点时相同,可分别得出向量-矩阵形式的动态方程: 111111212113131444101001101nnnxxxxxxuxx
25、xx 1112134nycccccx11111111212112131311344441010nnnnxxcxxcxxcucxxcxx00011yx29其对应的状态变量图如图(a),(b)所示。上面两式也存在对偶关系。约当型动态方程状态变量图 301.4 .4 1.4 .4 由差分方程和脉冲传递函数建立离散动态方程由差分方程和脉冲传递函数建立离散动态方程单输入-单输出线性定常离散系统差分方程的一般形式为:)() 1() 1()()() 1() 1()(011011kubkubnkubnkubkyakyankyankynnn两端取z变换并整理得1111011011110110( )( )( )n
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 现代 控制 理论 课件 ppt
限制150内