新课标十大核心概念解读优选演示课件.ppt
《新课标十大核心概念解读优选演示课件.ppt》由会员分享,可在线阅读,更多相关《新课标十大核心概念解读优选演示课件.ppt(225页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新课标十大核心概念解读新课标十大核心概念解读 在数学课程中,应当注重发展学生的数感、在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。析观念、运算能力、推理能力和模型思想。为了适应时代发展对人才培养的需要,数为了适应时代发展对人才培养的需要,数学课程还要特别注重发展学生的应用意识学课程还要特别注重发展学生的应用意识和创新意识。和创新意识。数感数感符号感符号感空间观念空间观念统计观念统计观念应用意识应用意识推理能力推理能力数感数感(调整)(调整)符号意识符号意识(调整)(调整)空间观念空间观念几何直
2、观几何直观(新增)(新增)数据分析观念数据分析观念(调整)(调整)运算能力运算能力(新增)(新增)应用意识应用意识推理能力推理能力模型思想模型思想(新增)(新增)创新意识创新意识(新增)(新增) 首先,核心概念是全面实现课程目标的需要。核心概念提出的目的之一,就是在具体的课程内容与课程的总体目标之间建立起联系。通过把握这些核心概念,实现数学课程目标。提出十大核心概念的意义提出十大核心概念的意义 其次,核心概念体现数学内容的本质。核心概念本质上体现了数学的基本思想,反映了数学内容的本质特征以及数学思维方式。 第三、核心概念是学生在义务教育阶段数学课程中最应培养的数学素养,是促进学生的重要方面。核
3、心概念往往是一类课程内容的核心或聚集点,它有利于我们把握课程内容的线索和层次,抓住教学中的关键,并在教学内容的教学中有机地去发展学生的数学素养。 核心概念是数学教学的统领和主线。核心概念是数学教学的统领和主线。教学的进程是以数学知识技能的学习逐步展开的,而在知识技能的学习和掌握过程中,要始终把相关的核心概念蕴含其中,设计有助于学生形成相关的数学核心概念的情境和活动,使学生逐步建立和形成数学核心概念。同时,也有助于学生对知识技能的理解和掌握。 理解和落实核心概念是数学教学中始终应当把握的一条主线。 核心概念都是数学课程的目标点,也应成为数学课堂教学的目标。并通过教师的教学予以落实。 数学内容的四
4、个方面都以10个核心概念中的一个或几个为统领,学生对这些核心概念的体验与把握,是对这些内容的真正理解和掌握的标志。核心概念的分类:1、体现在某一内容某一内容领域的核心概念。 数感、符号意识、运算能力主要体现在“数与代数”领域; 空间观念主要体现在“图形与几何”领域; 数据分析观念主要体现在“统计与概率”领域。2、体现在不同内容领域不同内容领域的核心概念。包括几何直观、推理能力和模型思想。 3、超越课程内容,整个小学数学课程都应特别注重培养学生的应用意识应用意识和创新意识。创新意识。 因此,在进行相应内容的教学时,教师要更多关注与哪些核心概念关系更为密切,教学中应予以更多的关注。核心概念的具体解
5、读一、数感一、数感 数感数感主要是指关于数与数量数与数量、数量关系数量关系、运算结果估计运算结果估计等方面的感悟。建立数感有助于学生理解现实生活中数的意义,理解或表述具体情境中的数量关系。 这是基于义务教育阶段数学课程内容的范围并根据学生的实际所作出的要求,有利于教师在教学中更好地把握数感培养的几条主线。(一)数感的内涵 将数感定义为一种感悟,这既包括了感知又包括了领悟。即有感性的认识又有理性的思维。 数感的培养既需要学生经历相应的活动,在活动中感知,也需要学生在活动中进行思考 ,逐渐领悟。(二)对数的感悟包括三个方面 数与数量:建立起抽象的数和现实中的数量之间的关系。这既包括从数量到数的抽象
6、过程中,对于数量之间共性的感悟,也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其合理性。 “当人们发现一对雏鸡和两天之间存在有某种共同的东西(数字2)时,数学就诞生了”。 二十世纪英国哲学家、数学家罗素 在小学低段,学生对数的感悟是从数数学习辩认各组实物对象的多少开始建立的。 随着年级的增高,学生还会经历更多的对数意义的感悟,并形成对数的各种表征方式的理解。 数量之间的关系:包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。 运算结果的估计。通过运算培养学生的估算意识和能力,以此发展学生的数感应成为了们现在课程教学的目标。 对运算结果的估
7、计涉及的因素很多:对参与运算的数与量意义及关系的理解、对运算方法的选择与判断、对运算方式角度的把握、对具体情的数量化的处理等。因此,对运算结果的估计反映的是学生对数学对象更为综合的数感。案例:吴正宪老师的一节估算课次数123456质量3283463073773983521.出示六次称出的所在大石头的质量(千克):方法一:3006=1800(小估法)方法二:4006=1800(大估法)方法三:300300300400400400=2100(大小估法)方法四:3506=2100(中估法)方法五:330 350300 380400 350=2110(四下五上估)方法六:3007=2100(凑估法)哪
8、种方法合理? 情境1: 350名同学要外出参观。有7辆车,每辆车56个座位,估一估够不够坐? 方法1:750=350 方法2:760=420 师:往大估(方法2)和往小估(方法1)哪个更好 生1:往小估都够了,按实际的56来计算就更够了。 师:往大估行吗? 生1:本来每辆车只有56个座位,你做成60个了,万一人来多了,有可能不够了。 生2:小估好,小估保险。 情境2: 一座桥限重3吨。一辆货车装了6箱货物,每箱285千克,车重986千克。这辆车可以安全过桥吗? 学生大多数把285估成300,300X6=1800,不到2000;986不到1000,所以能安全过桥。学生用了往大估的方法。师:这个问
9、题怎么不往小估了?生1:300都行,285更行。生2:这时候往大估“安全”。师:到底往大估安全还是往小估安全?遇到下一个问题这么办? (三)关于学生数感的培养 数感既然是对数的一种感悟,它就不会像知识、技能的习得那样立竿见影,它需要在教学中潜移默化,积累经验,经历一个逐步建立、发展的过程。 重视低段学生对数的感觉的建立,并在数感培养上处理好阶段性和发展性的关系。 紧密结合现实生活情境和实例,培养学生的数感。 让学生多经历有关数的活动过程,逐步积累数感经验。案例分享:数感是如何丰满起来的? 数感一:数字、位值、数级 数感二:计数单位从 “1”到 数感三:从精确的一个“点”到近似的一条“线” 数感
10、四:从确定的数到可能的数 数感五:从数的绝对性到数的相对性 21阶段内容数感一20以内数的认识数字二百千数的认识位值三较大数的认识数级 “数感”绝不是一个笼统的东西,它是鲜活的,是持续生长的,是逐渐丰满的。 一个好的数学教师,其指导过程可以描述为对学生已有数感的依赖与渐次丰满的过程。 数感可以怎样培养 数出数感 读出数感 算出数感与估出数感 用出数感 -小学数学教师2012年第12期案例: 简算,让数感的培养浸润在精心设计的每道题、每个数中283.5你能用几种方法简算?推荐阅读: 如何培养学生的数感如何培养学生的数感(英)安吉莱瑞(英)安吉莱瑞(Anghileri,J.) 著著 推荐阅读: 如
11、何培养学生的数感如何培养学生的数感(英)安吉莱瑞(英)安吉莱瑞(Anghileri,J.) 著著 精彩观点分享: 数感指的是一个人对数字和运算的一般理解力,以及灵活地应用这种理解力的倾向和能力,用这种方式可以做出明智的数学判断,并开发出数字和运算法则的有效策略。 仅仅教给孩子们相互独立的计算程序已经远远不够,教会他们如何找出数字之间的联系则成为数学教学的当务之急。 当教师把数学学习看作是过程和结果相互联系的逻辑结构,而不是仅仅传授标准计算程序进行教学的时候,孩子们就会知道,解题过程具有灵活性和选择性的特征。 如果教学方法的改变能让孩子们认识并掌握数字间的奥妙与联系,那么,将会涌现 出沉迷于数字
12、世界、独立自主的新一代数学学习者和数学思想家。二、符号意识 主要是指能够理解并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行运算和推理,得到的结论具有一般性。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。“符号感”改为“符号意识” 名词发生了改变,将“符号感”改为“符号意识”,符号是数学的一种特有语言,符号问题不应是一个感悟的问题,而应是一个意识的问题,因此,使用“符号意识”这一名词更为贴切。 表述发生了明显的改变,2011年版数学课标强调了“符号意识”的核心内容主要在于“使用符号表示数、数量关系和变化规律”。 2011年版数学课标补充了“符号意识”的价值
13、,指出“建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。” 符号感强调对符号的感觉、直觉和对符号的敏感性,而符号意识则突出了学生主动理解和运用符号的心理倾向。数学符号的特性 数学符号具有以下基本特性:抽象性、简洁性、一般性。(一)对符号意识的认识 数学符号最本质的意义就在于它是数学抽象的结果。如:在数与代数中,数来源于对数量本质(多与少)的抽象,而数字就成为能够以大小排列的符号。 数的运算也是从生活实践中加以抽象,逐渐形成法则,最后发展到使用字母这一符号来表示抽象的运算。“这使得可以像对数那样对符号进行运算,并且通过符号运算得到的结果具有一般性”。 数学符号不仅是一种表
14、示方式,更是与数学概念、命题等具体内容相关的、体现数学基本思想的核心概念,发展学生的符号意识是数学教学的重要目标。数学符号的作用主要包括: 表示数量关系(规律)表示公式、解释关系,说明规律; 延伸思维过程通过实施运算和推理;借助符号,人们可以将看不见的思维过程转化为可视的符号操作过程,便于深入进行思维。 解决问题用于建立数学模型的基础,推测结论。(二)符号意识所包含的内容 能够理解理解并且运用运用符号表示数、数量关系和变化规律。 两层含义: 一是能够理解符号所表示的意义。 二是能够运用数学符号去表示数学对象。(对数学符号不仅要懂,还要会用)数学符号的种类可以简单地划分为: 名称符号用于表达对象
15、,如函数; 关系符号用于表达两个(多个)数学对象之间的数学关系,如垂直、相似、大于等; 运算符号用于表示一种运算,如四则运算、积分运算、变换等; 逻辑符号表示两个命题之间的等价、推出关系等。 数学符号,如0、1、2、3等; 字母符号,用来表达数量关系、计算公式等,如s=vt(路程=速度时间)、S=ah2(三角形的面积=底高2)等; 关系符号,如、等; 运算符号,如、等; 结合符号,如()、 等; 单位符号,如角的计量单位“”、长度计量单位“cm” “dm”“m”等;(7)其他特定符号,如小数点“.”、百分号“%”、分数线“”等。 数学符号的表达是多样化的: 数字、字母、图象、关系式等构成了符号
16、系统。 知道使用符号可以进行运算和推理,得出的结论具有一般性。 使学生理解符号的使用是数学表达和进行数学思考的重要形式。三、关于符号意识的培养 在各学段紧密结合概念、命题、公式的教学,培养学生的符号意识。 结合现实情境培养学生的符号意识。 在数学问题解决中发展学生的符号意识。 首先是让学生亲近符号,接受理解符号。 其次是让学生初步感悟符号表达的优势与作用(1)数字符号。(2) 运算符号(3)关系符号 数学符号的象形特征给我们一开始就让孩子领略数学符号的美妙与可爱,提供了有利条件。 “用字母表示数” 出示:老师比小华大17岁。 提问:小华1岁时,老师多少岁?小华2、3、4岁时,老师多少岁? 生回
17、答:l+17、2+17、3+17、4+17 教师进一步提问:小华的年龄每年都在变化,老师的年龄也在变化,但是什么没有变化?上面的每一个式子只能表示某一年老师与小华的岁数关系,能不能用上面的每一个式子只能表示某一年老师与小华的岁数关系,能不能用一个式子简明地表示出任何一年两人的岁数关系呢一个式子简明地表示出任何一年两人的岁数关系呢? 学生讨论后汇报:用+17可以表示出任何一年老师与小华的岁数关系。 教师进一步引导学生体会符号的概括性:a表示什么?a+17又表示什么? 符号是数学的语言,是人们进行表示、计算、推理和解决问题的工具。因此,使学生逐步感受和拥有使用符号的能力是数学课程的一个重要任务。乘
18、法分配律乘法分配律用字母表示运算定律,与算式比较,一个特殊特殊,一个一一般般;与文字叙述比较,一个冗长冗长,一个简洁简洁。更在于准确、无歧义准确、无歧义。还可以给出乘法分配律的几何模型:abc 图的直观,式的凝练。 用形象来滋养抽象,用直觉来涵养思维 。符号的魅力:理科生的另类浪漫整首诗只有三个整首诗只有三个汉字、两个数学汉字、两个数学符号和一个逗号。符号和一个逗号。要理解这首诗,要理解这首诗,先要复习点数学先要复习点数学知识:知识:“”和和“)”都是定义一个数都是定义一个数值所在区间的符值所在区间的符号,号,“”表示数表示数值可以达到,值可以达到,“)”表示无限接近但表示无限接近但无法达到。
19、无法达到。 三、空间观念(一)空间观念的含义与意义 空间观念是对一个人周围环境和实物的直接感知。 全美数学教师理事会 几何是对空间的把握这个空间是儿童生活、呼吸和运动的空间。在这个空间里,儿童必须学会去了解、探索、征服,从而能更好地在其中生活、呼吸和运动。 弗莱登塔尔 对于学生来说,发展牢固的空间观念,掌握几何的概念和语言,可以较好地为学习数和度量概念做准备,还可以促进其他数学课程的进一步学习。 空间观念是创新精神所需的基本要素,没有空间观念和空间想像力,几乎难以谈到发明与创造。(二)空间观念所包含的内容 根据物体特征抽象抽象出几何图形,根据几何图形想想象象出所描述的实际物体(动脑) 想象想象
20、出物体的方位和相互之间的位置关系(动脑) 描述描述图形的运动和变化。(动口) 依据语言的描述画出画出图形。(动手)概括来说: “抽象”。 “抽象”是学生建立几何概念过程中最基本的思想方法。 “想象”。只有当学生能够以头脑中形成的表象为基本元素,展开想象和推理,学生的空间观念才能真正得到发展。 “描述”。借助已经形成的表象描述物体的运动和变化,这既是空间观念的重要表现形式,也是发展学生空间观念的重要途径。 “画出”。依据语言描述画出图形,是思维与外部语言、操作技能协同作用的结果。 促进空间观念发展的课程内容: 图形与几何中的“图形与运动”、“图形与位置”,“图形认识”中的“观察物体”、基本图形的
21、展开图等。 空间观念的培养贯穿在“几何与图形”学习的全过程中。(三)促进空间观念发展的教学策略 现实情境和学生经验是发展空间观念的基础。 利用多种途径发展学生的空间观念。提供多种素材,设计多样的活动。 在学生的思考、想象过程中发展空间观念。鼓励学生将观察、操作、想像、推理、表达等相结合。案例分享: 例1:我们可以在小学高年级安排这样的折纸活动:将一张正方形的纸对折后,再对折一次,然后用剪刀剪出一个小洞。再把纸完全展开。请画出或从下面四个图中选择它的展开图。 折痕 折痕 折痕 折痕让学生从下面的四个图中选出正确的答案:让学生从下面的四个图中选出正确的答案:案例案例2:五年级:五年级(苏教版下册苏
22、教版下册)107页第页第7题题7下面三个正方形的边长都是3厘米,涂色部分的面积相等吗?为什么?一位教师是这样教学的:师:(只出示第一个图)你能求出这个阴影部分的面积吗?学生计算出阴影面积。师:你能在第一张图中的正方形里画出比这个圆更大的圆来吗?试一试。生:不能,最多画的和刚才的圆一样。因为这个圆四个地方碰到了正方形,这时候的圆是最大的。生:正方形中最大的圆是直径等于正方形的边长的圆。 师:你能发挥想象,设计出在这个正方形里减去最大圆面积的图形来吗? 学生在教师提供的练习纸上进行设计,有的学生一人就设计了6种不同的图形。 案例4:周长的认识(视频)四、几何直观 主要是指利用图形描述和分析问题。借
23、助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用。(一)对几何直观的认识 一是几何。在这里几何是指图形。 二是直观。这里的直观不仅仅是指直接看到的东西,更重要的是依托现在看到的东西、以前看到的东西进行思考、想象。 综合起来,几何直观就是依托、利用图形进行数学的思考和想象。 几何直观是借助于见到的或想到的几何图形的形象关系产生的对事物的性质或数量关系的直接感知与认识。 图形以其直观的形式容易为人们所接受,给人们带来无穷无尽的直觉源泉,也为研究数学和解决问题提供工具。 “几何直觉乃是增进数学理
24、解力的很有效的途径,而且它可能使人增加勇气、提高修养。” 著名数学家阿蒂亚弄清几何直观与以下几个概念之间联系: 几何直观与直观化。 几何直观与空间观念。 几何直观与数形结合。 几何直观与直观化 直观化是一个外延相对宽泛的概念,且具有多种表征形式,不仅包括直观的背景材料,如实物、图表、插图、物体模型等,还可以是现实的情景问题、学生头脑里的“数学现实”和外显化的数学模式等。 案例:“线段可以补衣服” 一位教师执教苏教版二年级上册认识线段的教学片段如下: 师:把课前带来的毛线放在桌面上,说一说它是什么样的? 生:毛线是弯曲的。 师:你能想办法将它变直吗? (学生将毛线拉直并观察。) 师:将毛线拉直就
25、成了一条线段。你们小手捏住的两端叫做线段的端点。(学生指认线段的两个端点。) 师:同组的同学比一比你们手中的线段,说一说你有什么发现。 生:我的线段比他的线段长。生:我的线段是红色的,她的线段是黑色的。师:你如果是线段,你会怎样介绍自己?生:我要是被同学拉直了,就是线段。生:把我放在桌面上,我就是弯的。师:上了这节课,你知道了什么?生:我知道了线段还可以补衣服。(全班同学哈哈大笑。) 物体的直观形象本身,也可能把学生的注意力吸引住物体的直观形象本身,也可能把学生的注意力吸引住一个相当长的时间,但是运用直观的手段绝不是为了整节一个相当长的时间,但是运用直观的手段绝不是为了整节课地抓住学生的注意不
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新课 标十大 核心 概念 解读 优选 演示 课件
限制150内