最新冀教版九年级数学下30.4实际问题中二次函数的最值问题ppt公开课优质课件.ppt
《最新冀教版九年级数学下30.4实际问题中二次函数的最值问题ppt公开课优质课件.ppt》由会员分享,可在线阅读,更多相关《最新冀教版九年级数学下30.4实际问题中二次函数的最值问题ppt公开课优质课件.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、30.4 二次函数的应用二次函数的应用导入新课讲授新课当堂练习课堂小结 第2课时 实际问题中二次函数的最值问题第三十章 二次函数学习目标1.分析实际问题中变量之间的二次函数关系.(难点)2. 能应用二次函数的性质解决图形中最大面积问题.(重点)3.能应用二次函数的性质解决商品销售过程中的最大利润问题.(重点)4.弄清商品销售问题中的数量关系及确定自变量的取值范围. (难点)导入新课导入新课情境引入如图所示,要用长20m的铁栏杆,围成一个一面靠墙的长方形花圃,怎么围才能使围成的花圃的面积最大?如果花圃垂直于墙的一边长为xm,花圃的面积为ym2,那么yx(202x)试问:x为何值时,才能使y的值最
2、大?同学们,你们会算吗?思考:在日常生活中存在着许许多多的与数学知识有关的实际问题.解决生活中面积的实际问题时,你会用到了什么知识?商品买卖过程中,作为商家追求利润最大化是永恒的追求.那怎么获取最大利润呢?二次函数与几何图形面积的最值一例1 用总长为60m的篱笆围成矩形场地,矩形面积S随矩形一边长l的变化而变化.当l是多少时,场地的面积S最大?解:根据题意得S=l(30-l),即 S=-l2+30l (0l30).因此,当 时, S有最大值 301522( 1)bla 2243022544(1)acba 也就是说,当l是1 15m时,场地的面积S最大.讲授新课讲授新课变式1 如图,用一段长为6
3、0m的篱笆围成一个一边靠墙的矩形菜园,墙长32m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2x问题2 我们可以设面积为S,如何设自变量?问题3 面积S的函数关系式是什么?问题4 如何求解自变量x的取值范围?墙长32m对此题有什么作用?问题5 如何求最值?最值在其顶点处,即当x=15m时,S=450m2.问题1 变式1与例题有什么不同?设垂直于墙的边长为x米,Sx(602x)2x260 x.0602x32,即14x30.变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?xx60-2
4、x问题1 变式2与变式1有什么异同?问题2 可否模仿变式1设未知数、列函数关系式?问题3 可否试设与墙平行的一边为x米?则如何表示另一边?答案:设矩形面积为Sm2,与墙平行的一边为x米,则26013022xSxxx 问题4 当x=30时,S取最大值,此结论是否正确?问题5 如何求自变量的取值范围?0 0 x 18. 18.问题6 如何求最值?由于30 30 1818,因此只能利用函数的增减性求其最值.当x=18时,S有最大值是378. 不正确.变式3 用总长度为24m的不锈钢材料制成如图所示的外观为矩形的框架,其横档和竖档分别与AD,AB平行.设AB=x m,当x为多少是,矩形框架ABCD的面
5、积最大,最大面积是多少?22444(3)12,33xSxx 解:40,3a 当x=3时,S有最大值,且S最大=12m2.ADBC 实际问题中求解二次函数最值问题,不一定都取图象顶点处,要根据自变量的取值范围.通过变式1与变式2的对比,希望同学们能够理解函数图象的顶点、端点与最值的关系,以及何时取顶点处、何时取端点处才有符合实际的最值.知识要点二次函数解决几何面积最值问题的方法1.求出函数解析式和自变量的取值范围;2.配方变形,或利用公式求它的最大值或最小值,3.检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内. 例2 某商品现在的售价为每件60元,每星期可卖出300件,市场调查
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 最新 冀教版 九年级 数学 30.4 实际问题 二次 函数 问题 ppt 公开 优质 课件
限制150内