《最新北师大版九年级数学上1.2矩形的性质ppt公开课优质课件.ppt》由会员分享,可在线阅读,更多相关《最新北师大版九年级数学上1.2矩形的性质ppt公开课优质课件.ppt(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.2 矩形的性质与判定第一章 特殊平行四边形导入新课讲授新课当堂练习课堂小结第1课时 矩形的性质1.了解矩形的概念及其与平行四边形的关系;2.探索并证明矩形的性质定理.(重点)3.应用矩形的性质定理解决相关问题.(难点)学习目标活动:观察下面的图形,它们都含有平行四边形,请把它们全部找出来.问题:上面的平行四边形有什么共同的特征?导入新课导入新课矩形的定义一活动:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.矩形:有一个角是直角的平行四边形叫做矩形.矩形讲授新课讲授新课 矩形是特殊的平行四边形,它具有平行四边形的所有性质,但平行四边形不一定是矩形.归纳平行四
2、边形矩形集合平行四边形集合矩形性质的探究和证明二活动探究:准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.(2)根据测量的结果,猜想结论.当矩形的大小不断变化时, 发现的结论是否仍然成立?(3)通过测量、观察和讨论,你能得到矩形的特殊性质吗?ABCDOABADACBDBADADCAODAOB橡皮擦课本桌子物体测量(实物)(形象图)填一填 根据上面探究出来结论填在下面横线上.角:.对角线:.ABCD四个角为90相等O证明:(1)四边形ABCD是矩形. ABC=CD
3、A,BCD=DAB(矩形的对角线) ABDC(矩形的对边平行). ABC+BCD=180. 又ABC = 90, BCD = 90.证明性质:已知:如右图,四边形ABCD是矩形,ABC=90,对角线AC与DB相较于点O.求证:(1)ABC=BCD=CDA=DAB=90;(2)AC=DB.ABCDOABC=BCD=CDA=DAB =90.(2)四边形ABCD是矩形,AB=DC(矩形的对边相等).在ABC和DCB中,AB=DC,ABC=DCB,BC= CB,ABC DCB.AC=DB. 1.矩形的四个角都是直角. 2.矩形的对角线相等.定理ABCDO做一做:请同学们拿出准备好的矩形纸片,折一折,观
4、察并思考. (1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?矩形的性质:对称性: .对称轴:.轴对称图形2条归纳结论 矩形是特殊的平行四边形,它除具有平行四边形的所有性质外,还有平行四边形所没有的特殊性质.对称性:是轴对称图形.角:四条角都是90.对角线:相等. 角:对角相等.边:对边平行且相等.对角线:相交并相互平分.矩形的特殊性质平行四边形的性质已知:如右图,四边形ABCD是矩形,对角线AC与BD交于点E.证明:在RtABC中,BE= AC.ABCDE21证明:四边形ABCD是矩形.AC = BD(矩形的对角线相等).BE=
5、 DE= BD,AE=CE= AC (矩形对角线相互平分),BE= AC.212121直角三角形斜边上的中线上的性质三 直角三角形斜边上的中线等于斜边的一半直角三角形斜边上的中线等于斜边的一半. . 定理练一练:根据右图填空已知ABC中,ABC = 90,BD是斜边AC上的中线.(1)若BD=3cm,则AC =_cm;(2)若C = 30 , ,AB = 5cm,则AC =_cm, BD = _cm.ABCD6105例1:如图,在矩形ABCD中,两条对角线相交于点O,AOD=120,AB=2.5 ,求矩形对角线的长.矩形的性质定理的应用四解:四边形ABCD是矩形. AC = BD(矩形的对角线
6、相等). OA= OC= AC, ,OB = OD = BD ,(矩形对角线相互平分)OA = OD.ABCDO2121典例精析ABCDOAOD=120,ODA=OAD= (180- 120)=30.又DAB=90 ,(矩形的四个角都是直角) BD = 2AB = 2 2.5 = 5.21提示:AOD=120 AOB=60 OA=OB=AB AC=2OA=22.5=5.你还有其他解法吗?例2:如图,在矩形ABCD中,E是BC上一点,AE=AD,DFAE ,垂足为F.求证:DF=DC.ABCDEF证明:连接DE.AD =AE,AED =ADE.四边形ABCD是矩形,ADBC,C=90.ADE=D
7、EC, DEC=AED.又DFAE, DFE=C=90.又DE= DE,DFE DCE,DF=DC.1.如图,在矩形ABCD中,对角线AC , BD交于点O ,已知AOB=60 , AC=16,则图中长度为8的线段有( )A.2条 B.4条 C.5条 D.6条 DABCDO60当堂练习当堂练习2.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BEAC交DC的延长线于点E.(1)求证:BD=BE,(2)若DBC=30 , BO=4 ,求四边形ABED的面积.ABCDOE(1)证明:四边形ABCD是矩形.AC= BD,ABCD.又BEAC,四边形ABEC是平行四边形,AC=BE,BD=BE.(2)解:在矩形ABCD中,BO=4,BD = 2BO =24=8.DBC=30,CD= BD= 8=4,AB=CD=4,DE=CD+CE=CD+AB=8.在RtBCD中,BC=四边形ABED的面积=(4+8)= .ABCDOE21. 34482222CDBD212134324平行四边形1.矩形是轴对称图形和中心对称图形2.矩形四个角都是直角3.矩形的对角线相等且相互平分矩形性质有一个角是直角转换直角三角形等腰三角形课堂小结课堂小结见本课时练习课后作业课后作业
限制150内